

FORWARD-LOOKING STATEMENTS

Safe-Harbor Statement

Any statements made in this presentation relating to future financial or business performance, conditions, plans, prospects, trends, or strategies and other financial and business matters, including without limitation, the prospects for commercializing or selling any product or drug candidates, are forward-looking statements within the meaning of the Private Securities Litigation Reform Act of 1995. In addition, when or if used in this presentation, the words "may," "could," "should," "anticipate," "believe," "estimate," "expect," "intend," "plan," "predict" and similar expressions and their variants, as they relate to Altimmune, Inc. (the "Company") may identify forward-looking statements. The Company cautions that these forward-looking statements are subject to numerous assumptions, risks, and uncertainties, which change over time. Important factors that may cause actual results to differ materially from the results discussed in the forward looking statements or historical experience include risks and uncertainties, including risks relating to: our lack of financial resources and access to capital; clinical trials and the commercialization of proposed product candidates (such as marketing, regulatory, product liability, supply, competition, dependence on third parties and other risks); the regulatory approval process; dependence on intellectual property; the Company's BARDA contract and other government programs, reimbursement and regulation. Further information on the factors and risks that could affect the Company's business, financial conditions and results of operations are contained in the Company's filings with the U.S. Securities and Exchange Commission, including under the heading "Risk Factors" in the Company's annual reports on Form 10-K and quarterly reports on Form 10-Q filed with the SEC, which are available at www.sec.gov. The statements made herein speak only as of the date stated herein, and any forward-looking statements contained herein are based on assumptions that the Company believes to be reasonable as of this date. The Company undertakes no obligation to update these statements as result of new information or future events.

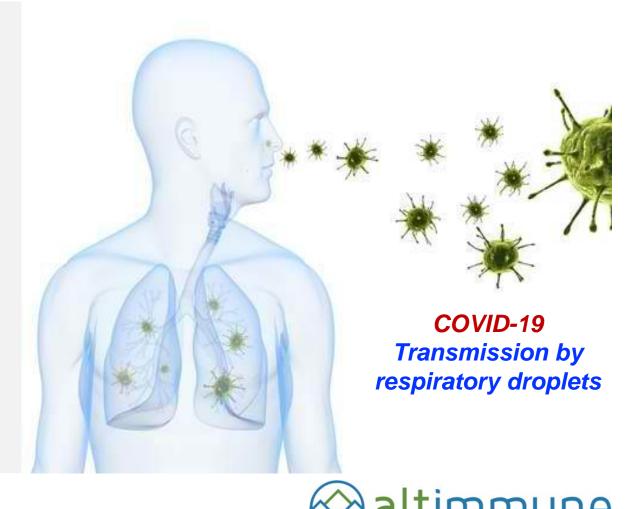
INVESTMENT HIGHLIGHTS

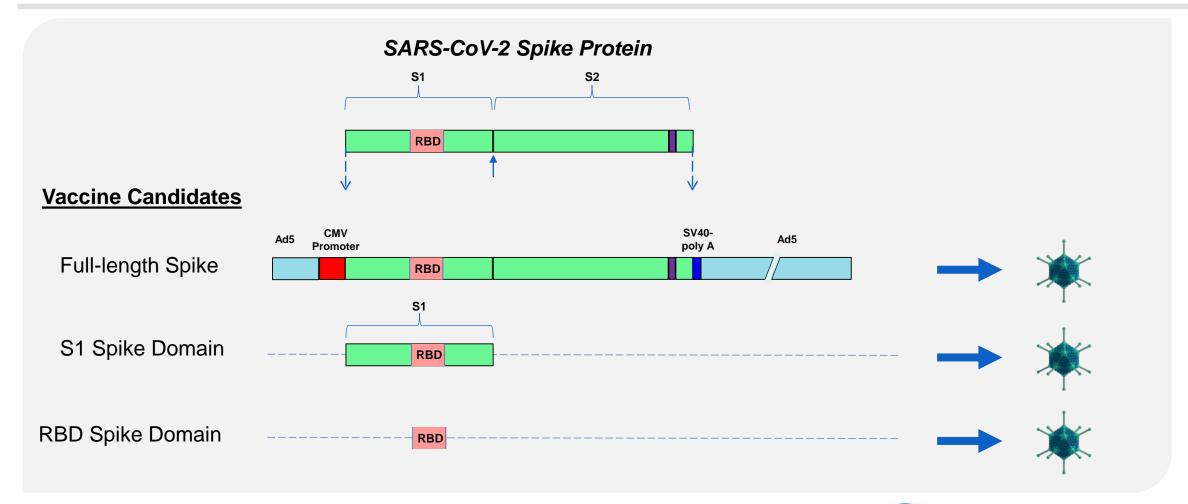
Developing next
generation peptide
therapeutics for liver
disease and oncology

Proprietary intranasal vaccine platform ideally suited for rapid response to pandemic situations

Near-term value-driving catalysts with sufficient cash and investments on hand

DEVELOPMENT PIPELINE


PROGRAM	PRODUCT NAME	PRECLINICAL	PHASE 1	PHASE II	PHASE III	STATUS
LIVED DIOEAGEG	ALT-801	NASH				Advancing into Phase 1 development in 2020
LIVER DISEASES	HepTcell™	Chronic Hepatitis E	3			Advancing into Phase 2 development in 2020
CONJUGATED IMMUNOSTIMULANT FOR CANCER	ALT-702	Solid Tumors				Completing proof of concept studies
	AdCOVID TM	COVID-19				Phase 1 trial targeted for Q4 2020
INTRANASAL VACCINES	NasoShield™	Anthrax		Funded b \$133.7M Pot		In Phase 1b, data targeted 2H 2020
	NasoVAX TM	Seasonal & Pande	mic Influenza		g Potential erships	Ready for Phase 2b


IMPORTANT CONSIDERATIONS FOR A SUCCESSFUL COVID-19 VACCINE

- Immune mechanism of protection is not well defined – vaccine should activate multiple arms of immune system
- Infection occurs through and in the nose and airways – intranasal vaccination to provide nasal mucosal immunity - a first line of defense
- Vaccine distribution and administration on a global scale represents significant challenge – single dose, simple dosing method, product stability critical

AdCOVIDTM: SINGLE-DOSE INTRANASAL VACCINE FOR COVID-19

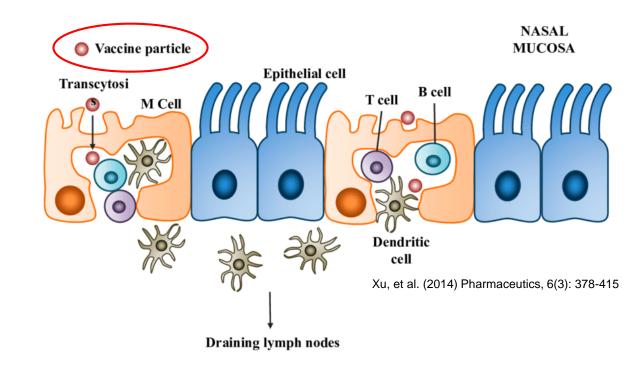
STRUCTURE OF VACCINE CANDIDATES

AdCOVIDTM: SINGLE-DOSE INTRANASAL VACCINE FOR COVID-19

IDEALLY SUITED FOR PANDEMIC RESPIRATORY VIRUS

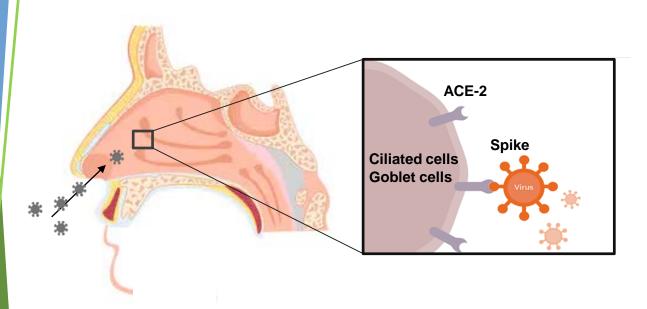
Intranasal COVID-19 Vaccine Designed for:

- Seroprotection with single intranasal dose
- Stimulation of <u>multiple arms</u> of the body's natural immune responses
- <u>Excellent stability</u> profile shown in Altimmune's intranasal platform vaccines
- Safety profile indistinguishable from placebo in Altimmune's clinically tested platform vaccines



NASAL MUCOSAL IMMUNITY - STIMULATION BY INTRANASAL DELIVERY

FIRST LINE OF DEFENSE AGAINST INVADING VIRUSES AND OTHER PATHOGENS

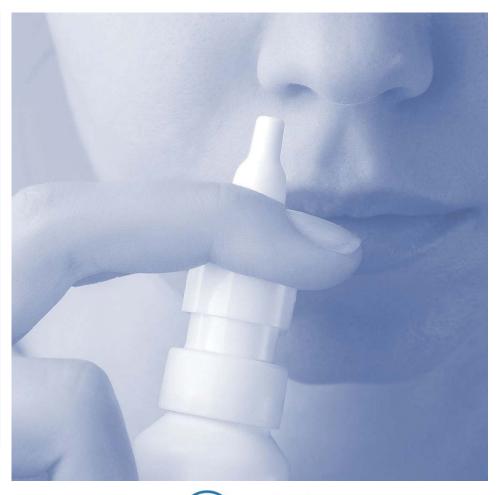

- A specialized immunity at the boundary of the environment and the host – including the respiratory tract
- Requires intranasal dosing to be stimulated in the nose, lungs and airways
- Protects from virus challenge in humans

NASAL MUCOSAL IMMUNITY PROTECTS AGAINST COVID-19

TREATMENT AT SITE OF VIRAL ENTRY, REPLICATION AND TRANSMISSION

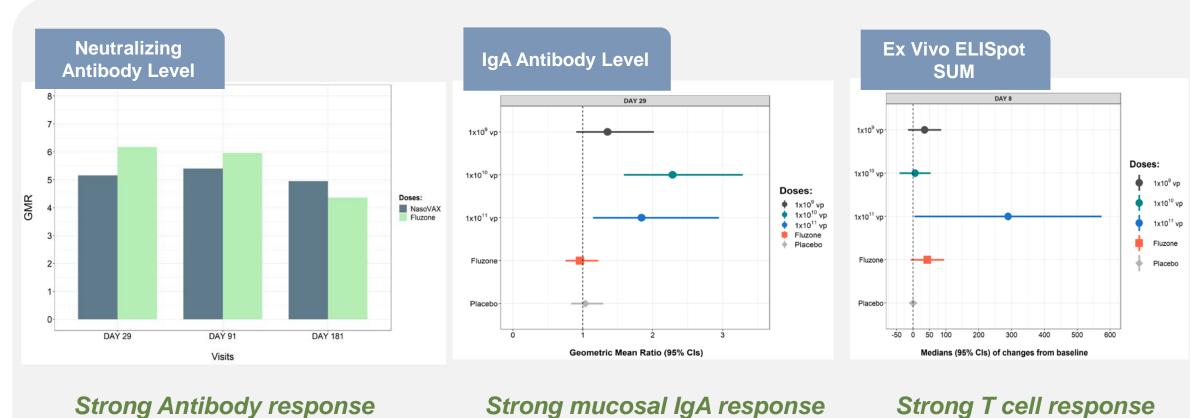
- SARS-CoV-2 has high tropism for the nasal cavity which has a dense cluster of ACE-2 receptors¹
- CDC has identified loss of smell/taste as an early symptom of COVID-19 infection
- In non-human primates, intramuscular vaccination decreased SARS-CoV-2 in lungs but had no effect on infection in the nasal cavity²
- Nasal mucosal immunity affords protection at the site of viral entry and early replication and blocks transmission by shed virus³

¹ Sungnak W, Nat Med. 2020;26(5):681-687.


² N van Doremalen et al.

³ Gould VMW, Front Microbiol. May 2017 Volume 8 | Article 900

COMPELLING CLINICAL EVIDENCE WITH ALTIMMUNE'S INFLUENZA VACCINE CANDIDATE – NasoVAX


NasoVAX Intranasal Influenza Vaccine


- 100% seroprotection after a single dose
- Neutralizing antibody response equal to Fluzone® commercial influenza vaccine
- Stimulated nasal mucosal and cellular immune responses
- Durable response lasted at least one year after single dose vaccination
- Safety profile indistinguishable from placebo

COMPELLING CLINICAL EVIDENCE WITH ALTIMMUNE'S INFLUENZA VACCINE CANDIDATE – NasoVAX

INTRANASAL AdCOVID IS NOT LIKE INTRANASAL FLUMIST®

FLUMIST VERSUS REPLICATION-DEFICIENT Ad5 VECTOR

FluMist	Replication-deficient Ad5 Vector		
Attenuated influenza virus that requires replication for potency	Does not require replication for potency		
Activity blocked by pre-existing immunity to influenza	Activity not blocked by pre-existing immunity to Ad5		
Low vaccine dose (6 -7 logs)	High vaccine dose (9 -11 logs)		
Weak serum Ab response ¹	Strong serum Ab response		
Weak T cell response ¹	Strong T cell response		

¹ Hoft, et al., Clin Vaccine Immunol. 2017 Jan; 24(1) 1-9

WHO COVID-19 VACCINE TARGET PRODUCT PROFILE

ALTIMMUNE VACCINE PLATFORM MEETS WHO'S PREFERRED ATTRIBUTES

Preferred Attribute ¹	Altimmune Influenza Vaccine Data		
Single dose	Seroprotection with single dose administration		
Rapid onset of protection	Strong serological response at 2 weeks		
Immunity lasting at least 1 year	Serological response unchanged at 400 days		
Non-injected	Intranasal administration		
Temperature stability	At least 3 months at 25°C in a liquid formulation		
Ability to provide at low cost	High yield, scalable manufacturing process		

¹ https://www.who.int/blueprint/priority-diseases/key-action/WHO_Target_Product_Profiles_for_COVID-19_web.pdf

COMPARISON OF CURRENT COVID-19 VACCINE CANDIDATES

PLATFORM CHARACTERISTICS AND PRACTICAL CONSIDERATIONS

Factor	RNA	DNA	Protein	AdCOVID
Number of Doses	2	1-2	1-2	1
Route of Administration	Injection	Injection	Injection	Nasal Spray
Neutralizing antibody / T cells	Yes	Yes	Yes	Yes
Nasal Mucosal Immunity	No	No	No	Yes
Ease of Administration	++	+	++	++++
Other Components Required	No	Yes	Yes	No
Product Stability	+	+++	++	++++

AdCOVIDTM: DEVELOPMENT STATUS

RAPID RESPONSE TO THE COVID-19 PANDEMIC

Activity	Completion
Design and Engineering of Vaccine Candidates	Complete
Preclinical Testing and Down Selection of Candidate	Q2 2020
Toxicology	Not Required
GMP Manufacturing	Q4 2020
Phase 1 Initiation	Q4 2020

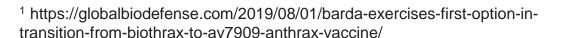
AdCOVIDTM: VACCINE ATTRIBUTES IDEAL FOR COVID-19

MEETS THE CRITERIA FOR AN EFFECTIVE EASY-TO-USE VACCINE

COVID-19 Challenge	Altimmune Platform Attributes
Immune mechanism of protection is not well defined	Broad activation of antibody, mucosal and cellular immune arms
Infection occurs through the nose and airways	Intranasal delivery establishes nasal mucosal immunity at point of viral entry
Vaccine distribution and administration on a global scale represents significant challenge	Stable, single dose vaccine delivered without needles

NasoShield: FUNDED THROUGH A DEVELOPMENT CONTRACT WITH BARDA

Phase 1b initiated, data expected in H2 2020



Received \$3.7M BARDA funding to initiate Phase 1b

\$133.7M total contract value through Phase 2

Stockpiling of vaccine may occur prior to licensure¹

 Nuthrax[®] initial stockpiling valued at \$261M with a \$1.5 billion total potential contract value

DIFFERENTIATED

Only single-dose vaccine currently in development

Intranasal spray

Faster protection

Superior logistics
 No cold chain distribution
 Self administered/no injection required

NasoShield
Differentiated
Anthrax Vaccine

COMPETITION

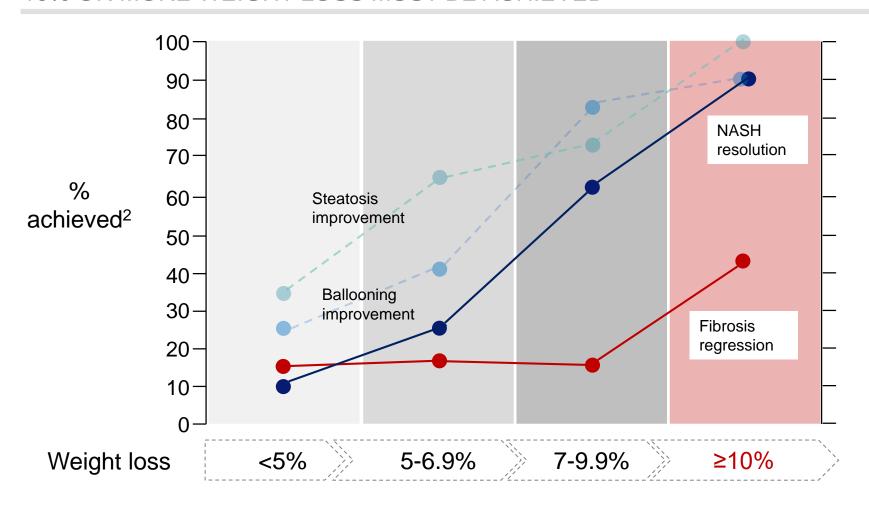
Biothrax® - Only approved vaccine

- 3 dose regimen
- Requires an adjuvant
- Subcutaneous injections

NuThrax® (AV7909) - Phase 3

- 2 dose regimen
- Requires 2 adjuvants
- Intramuscular injections

NASH AND NAFLD


HEPATIC MANIFESTATIONS OF OBESITY AND METABOLIC SYNDROME

- NAFLD is present in up to 90% of obese patients, and ~20% of NAFLD patients progress to NASH¹
- Up to 40% of NASH patients develop NAFLD recurrence one year after liver transplant—the underlying metabolic disease is still present²
- The treatment of obesity is the cornerstone of treating NASH and the principal morbidities of NASH^{1,3}
- Drugs in development should target the weight loss range achieved by bariatric surgery⁴

SUBSTANTIAL BODY WEIGHT LOSS IS NECESSARY TO BLUNT NASH PROGRESSION

10% OR MORE WEIGHT LOSS MUST BE ACHIEVED1

The treatment of obesity remains the cornerstone of NASH and NAFLD therapy

Meaningful weight loss is rarely achieved without medical intervention

Current drugs have failed to deliver the weight loss achieved by bariatric surgery

⁰¹⁵

¹ Promrat et al Hepatology 2010; Glass et al Dig Dis Sci 2015; Vilar-Gomez et al Gastroenterology 2015; Marchesini et al Hepatology 2016; Koutowkidis et al JAMA Intern Med 2019

SNAPSHOT OF COMPOUNDS IN ADVANCED NASH DEVELOPMENT

MOST AGENTS FAIL TO ACHIEVE MEANINGFUL LEVELS OF WEIGHT LOSS

Agent	Author (year)	Mechanism	Weight Loss (%)
Obeticholic acid	Younossi, ZM 2019 ¹	FXR agonist	~2%
Resmetirom	Harrison, SA 2018 ²	THRβ agonist	no change
Aldafermin (3mg)†	Harrison, SA 2019 ³	FGF19 agonist	1.3%
Pegbelfermin (10 mg) ^{††}	Sanyal, A 2018 ⁴	FGF21 agonist	2.2%
AKR-001 (70 mg)	Ritchie, M 2020 ⁵	FGF21 agonist	no change
Firsocostat	Lawitz, EJ 2018 ⁶	ACC inhibitor	no change
Elafibranor	Ratziu, V 2016 ⁷	PPARα/δ agonist	no change

[†] No information has been made public on 1mg dose

^{††} Gain of 0.6% on 20mg dose

¹Younossi, YM, et al. (2019) Lancet 394: 2184-96; ²Harrison, SA, et al. Lancet 394: 2012-24; ³ Harrison, SA, et al. (2019) Lancet 391:1174-85; ⁴Sanyal, A, et al. (2018) Lancet 392:2705-17; ⁵Ritchie, M, et al. (2020) Exp Opin Invest Drugs, 29:2, 197-204; ⁶ Lawitz, EJ, et al. (2018) Clin Gastroenterol Hepatol 16:1983-91; ⁷Ratziu, V, et al. (2016) Gastroenterol 150: 1147-59

ALT-801: GLP-1/GLUCAGON RECEPTOR DUAL AGONIST

OPTIMIZED FOR NASH AND WEIGHT LOSS

GLP-1

blood glucose

appetite

inflammation

Indirect effects on liver

GLUCAGON

energy expenditure

adipose browning

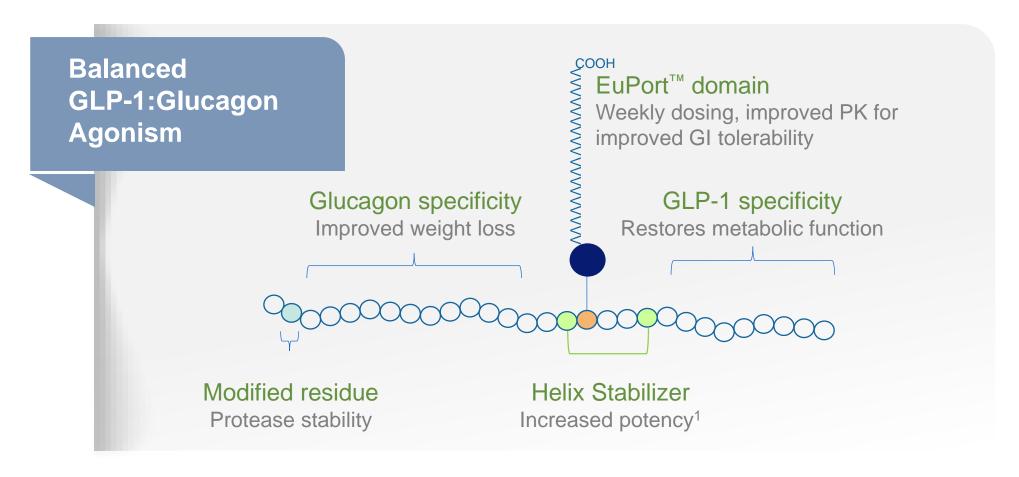
lipolysis/ gluconeogenesis

mobilization of liver fat

Direct effects on liver

SIGNIFICANT REDUCTIONS IN

body weight


liver fat, inflammation and resulting fibrosis

blood glucose

ALT-801: RATIONALLY DESIGNED AND HIGHLY DIFFERENTIATED

PROPRIETARY EuPort™ DOMAIN PROVIDES PROLONGED SERUM HALF-LIFE AND REDUCED PEAK CONCENTRATION

ALT-801: BALANCED 1:1 GLP-1/ GLUCAGON AGONISM

KEY TO ACHIEVING IMPROVED WEIGHT LOSS

- By activation of a 2nd mechanism, GLP-1/glucagon receptor dual agonists promote greater weight loss than GLP-1 agonists alone
- As demonstrated by ALT-801 in animal models, dual agonists have potential for greater weight loss with lower dose
- Sustained effects on both receptors are necessary to achieve improved weight loss
- Single receptor-biased ligands retain effects on only one receptor over a prolonged dosing period¹
- By achieving 1:1 balance, the synergies of GLP-1 and glucagon are maintained throughout the entire dosing period

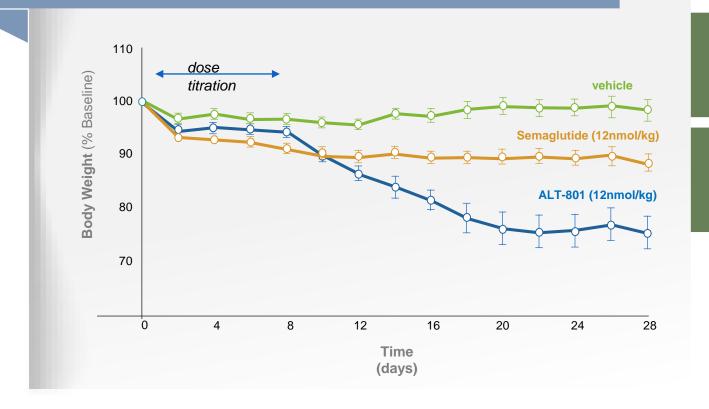
ALT-801: IMPROVED PK FOR BETTER GI TOLERABILITY

PROLONGED SERUM HALF-LIFE AND REDUCED PEAK CONCENTRATION MAY LEAD TO BETTER TOLERABILITY

 EuPortTM domain has surfactant-like properties – containing a water-soluble portion and a fat-soluble portion:

- When conjugated to a small peptide the EuPort domain can:
 - Slow the entry of the peptide into the blood lowering the peak concentration (C_{max}) of the peptide for improved tolerability
 - Significantly extend the half-life (t_{1/2}) of the peptide from minutes to a week or more which has been shown to improve tolerability for GLP-1 receptor agonists¹

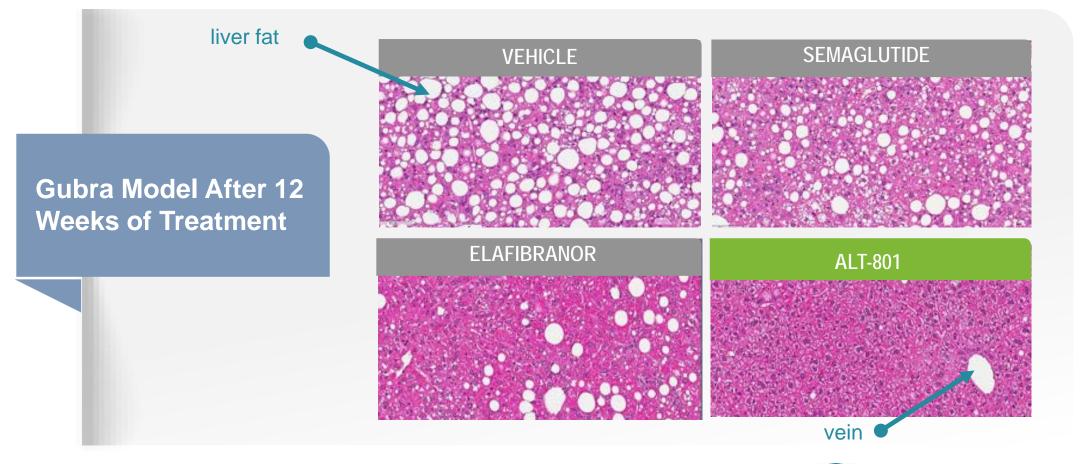
ALT-801: SUMMARY OF NON-CLINICAL STUDIES COMPLETED TO DATE THOROUGH INVESTIGATION OF COMPOUND CHARACTERISTICS


Species	Model	Treatment	Location	Results	Assessment
Mouse	Gubra DIO	12 weeks	Gubra (Denmark)	25% body weight loss 68% liver weight loss 74% decrease in fibrosis	ALT-801 returns animals to lean normal body/liver weight
Mouse	Diet Induced Obesity	4 weeks	The Jackson Laboratory (USA)	25% body weight loss	ALT-801 returns animals to lean normal body weight
Rat	Diet Induced Obesity	4 weeks	Charles River (USA)	40% body weight loss 52% liver weight loss	ALT-801 returns animals to lean normal body/liver weight
Mouse	Primary pharmacology	Single Dose	The Jackson Laboratory (USA)	Normalized glucose	ALT-801 more potent that semaglutide with prolonged gluco-regulatory effect
Mouse	PK	Single Dose	The Jackson Laboratory (USA)	ALT-801 later Tmax, lower Cmax vs semaglutide	More gradual PK for improved tolerability
Rat	PK	4 weeks	Charles River (USA)	Concentration still rising at 8hr	ALT-801 later Tmax, lower Cmax vs semaglutide
Minipig	PK	Single dose	Sinclair Research (USA)	T _{1/2} 52hr, MRT 86hr	ALT-801 T _{1/2} and MRT longer than literature standard (semaglutide) in minipigs
Human	Receptor activation	Cells in vitro	DiscoverX (USA)	GLP-1 EC ₅₀ 38pM Glucagon EC50 42pM	ALT-801 highly potent, evenly balanced dual agonist

ALT-801

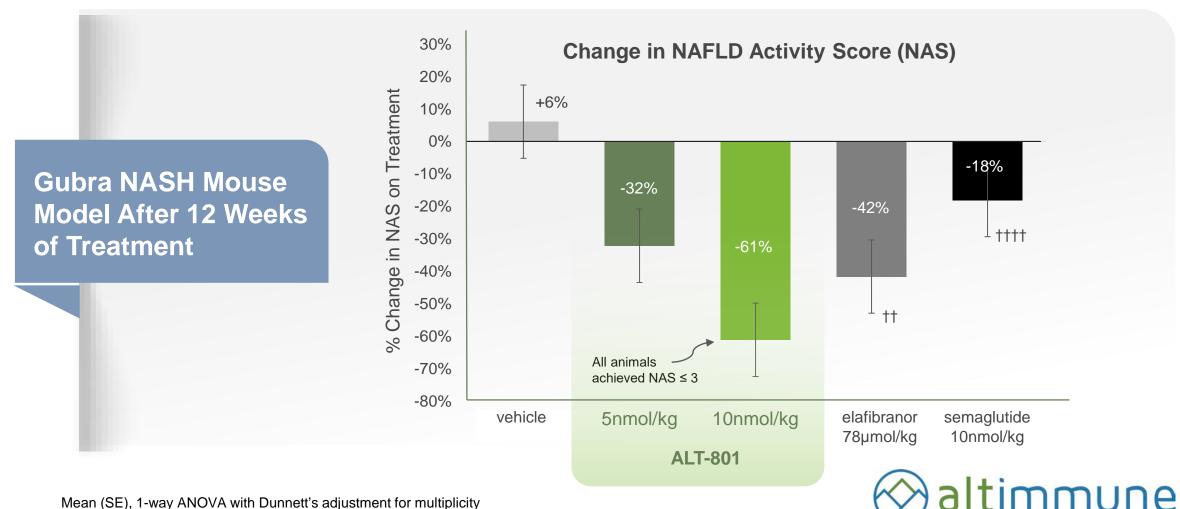
25% REDUCTION IN BODY WEIGHT TO CHOW-FED LEAN NORMAL RANGE

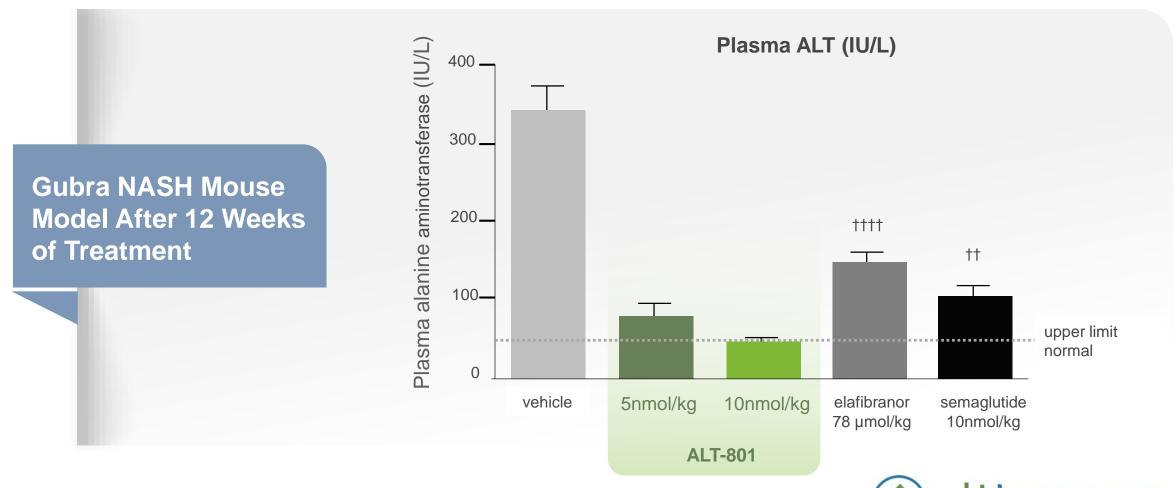
Mouse DIO Model After 4 Weeks of Treatment



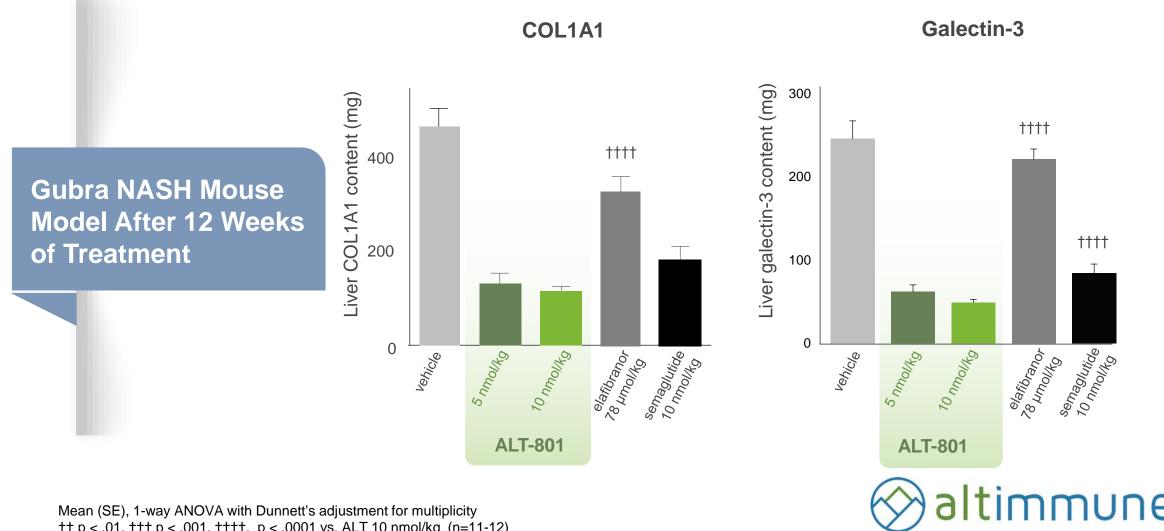
More than **2x** the weight loss of **semaglutide**

Body weight decreased to **lean normal range**


ALT-801 REDUCTION IN LIVER FAT TO CHOW-FED LEAN NORMAL


ALT-801

GREATER REDUCTION IN NAFLD ACTIVITY SCORE (NAS)


Mean (SE), 1-way ANOVA with Dunnett's adjustment for multiplicity $\dagger\dagger p < .01, \dagger\dagger\dagger p < .001, \dagger\dagger\dagger\dagger, p < .0001$ vs. ALT 10 nmol/kg (n=11-12)

ALT-801 PLASMA ALT NORMALIZED

ALT-801 GREATER EFFECTS ON FIBROSIS

ALT-801 SUMMARY

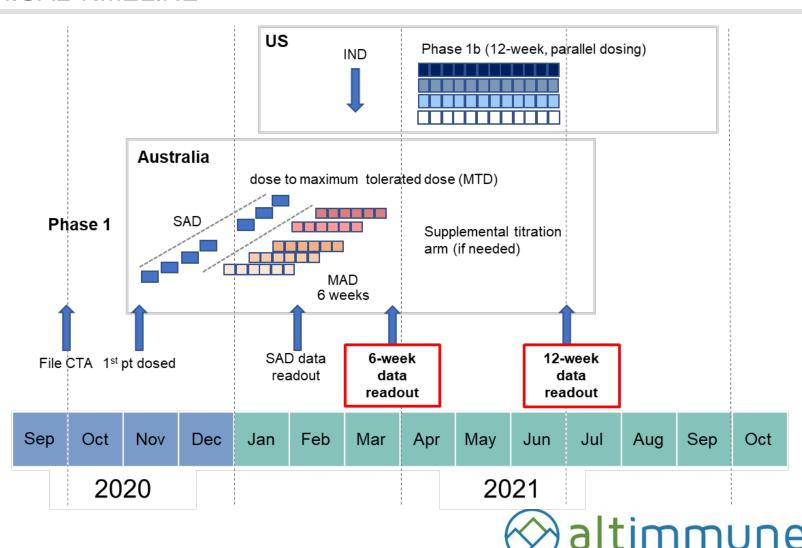
- ALT-801 preclinical results showed superior reductions in nearly all measured NASH parameters compared to semaglutide or elafibranor, returning many parameters to lean normal range:
 - Body and liver weight
 - NAS and ALT
 - Collagen (COL1A1 and galectin-3) content
 - Liver fat, cholesterol and triglycerides
- ALT-801 improved metabolic function and exhibited pleiotropic effects in preclinical testing across multiple pathways involved in NASH
- ALT-801 resulted in more profound suppression of genes associated with steatosis, inflammation and stellate cell fibrosis by RNA sequencing compared to elafibranor

ALT-801

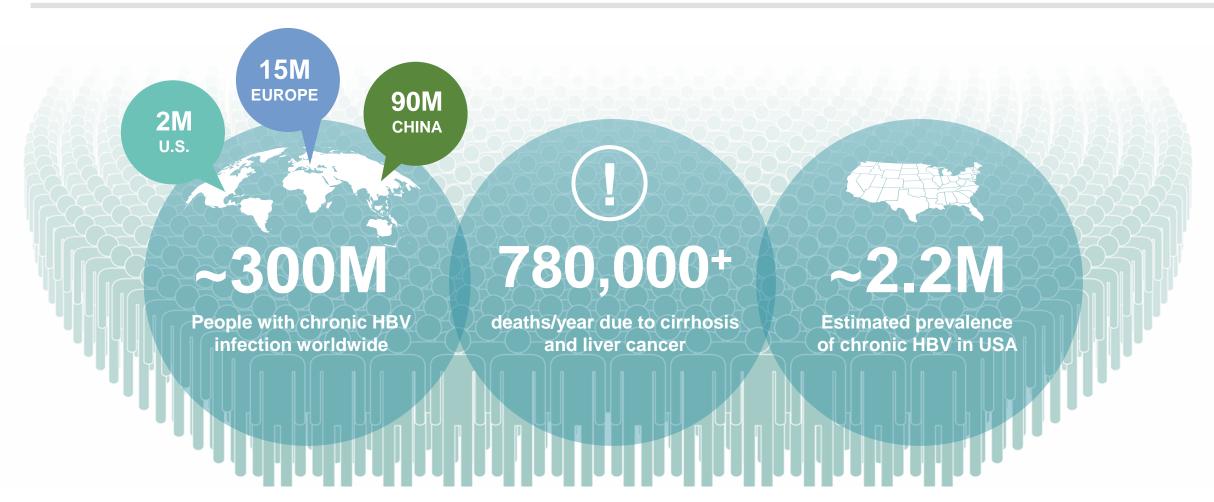
PROJECTED PHASE 1 CLINICAL TIMELINE

Phase 1 Summary

- 1. SAD in Australia: ~50 patients
- 2. 6-week MAD in Australia: ~60 patients
- 3. 12-week parallel-dose in US: ~50 patients


Patient population: Overweight and obese non-diabetics

Endpoints in 6-week study

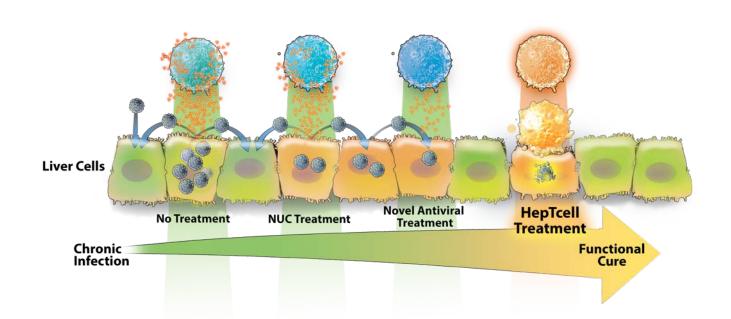

- · Safety, tolerability
- Pharmacokinetics (PK)
- Preliminary read out on weight loss, resting energy expenditure (REE), and liver fat
- · Glucose homeostasis

Endpoints in 12-week study

- · Safety, tolerability
- PK
- Weight loss
- Liver Fat by MRI-PDFF; lean body mass;
- Non-invasive fibrosis markers
- REE and respiratory quotient (Rq), lipids
- Glucose homeostasis

HepTcell: T CELL STIMULANT THERAPEUTIC FOR CHRONIC HEPATITIS B SIGNIFICANT OPPORTUNITY TO IMPROVE CURRENT HBV CURE RATES

CURRENTLY APPROVED HBV THERAPEUTICS DO NOT LEAD TO A CURE


IMMUNE ACTIVATION WILL BE REQUIRED FOR SIGNIFICANT IMPACT

Current antivirals prevent disease progression but rarely clear chronic infection

Breaking T cell immune tolerance is key to functional cure

Newer direct-acting antivirals unlikely to result in immune reactivation alone

HepTcell is designed to "wake up" dormant T-cells to eliminate infection

HepTcell: PHASE 1 SAFETY AND IMMUNOGENICITY STUDY

STUDY IN SUBJECTS CHRONICALLY INFECTED WITH HBV

POPULATION

60 HBeAg- chronic HBV patients

Well controlled on licensed antivirals (entecavir or tenofovir)

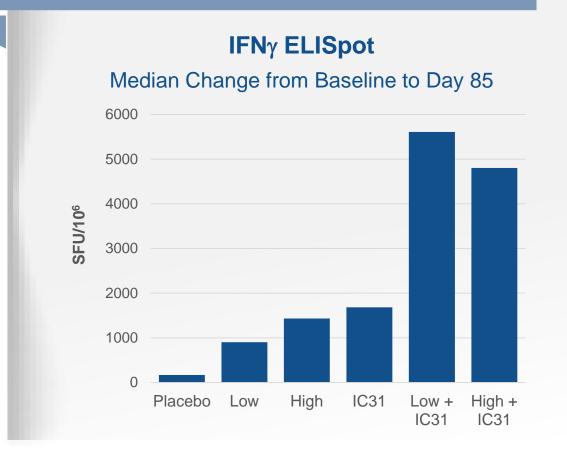
DESIGN

3 injections 28 days apart

4 different regimens vs placebo and adjuvant alone

RESULTS

All regimens well tolerated


No liver flares or autoimmune events

Increased T cell response to HBV peptides in adjuvanted regimens

HepTcell: PHASE 1 SAFETY AND IMMUNOGENICITY STUDY

Anti-HBV T-cell Response After 3 Injections

HepTcell breaks immune tolerance in chronic hepatitis B patients

T cell responses strongest when combined with IC31TM adjuvant

HepTcell dose and use of adjuvant confirmed for Phase 2 studies

DIFFERENTIATED

DEVELOPMENT PLAN

Designed to restore immune control of infection instead of targeting viral pathway

Targets all HBV genotypes

Complimentary to currently approved antivirals and other products in development

Phase 1 data in chronically infected population documented HBV T cell stimulation

HepTcell

Specific Immunotherapy for Chronic HBV

File IND in Q2 2020 following successful pre-IND meeting

Phase 2 program in **expanded chronic HBV patient population**

Exploit immune activation of HepTcell in combination with other novel HBV therapeutics

Seek commercial partner with complementary therapeutic product

STRONG INTELLECTUAL PROPERTY PORTFOLIO

SIGNIFICANT PATENT TERM REMAINING IN ALL FAMILIES

2 Granted US patents | Patent applications other territories **ALT-801** Expiry \geq 2035 Granted US, KR patent | Patent applications other territories HepTcell Expiry \geq 2033 Granted US patent | Patent applications other territories **ALT-702** Expiry ≥ 2034 Granted US, EP, JP patent **NasoShield** Expiry ≥ 2032 Granted US, EP, JP patent | Patent applications other territories **NasoVAX** Expiry \geq 2032 AdCOVID Patents pending

FINANCIAL HIGHLIGHTS

ALTIMMUNE IS WELL POSITIONED TO ADVANCE MULTIPLE PRODUCT CANDIDATES

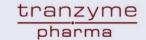
STRONG EXECUTIVE MANAGEMENT TEAM

Vipin K. Garg, PhD President & CEO

Will Brown, CPA, MBA Chief Financial Officer

Scott Harris, MD Chief Medical Officer

Scot Roberts, PhD Chief Scientific Officer


Bertrand Georges, PhD Chief Technology Officer

José Ochoa, JD **Chief Business Officer**

