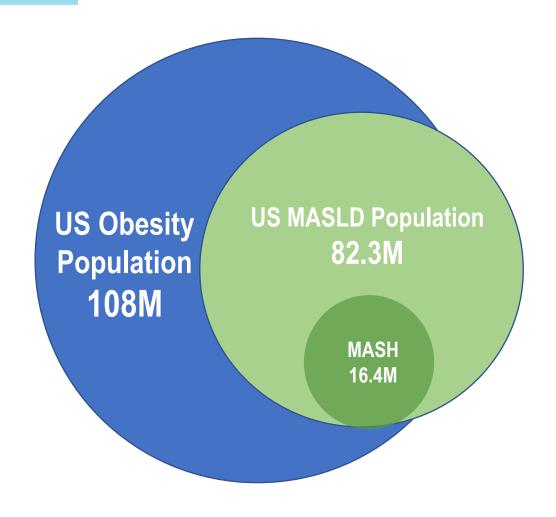
Role of Glucagon-Containing Dual and Triple Agonists in the Treatment of Obesity and MASH

M. Scott Harris, MD Chief Medical Officer Altimmune, Inc.

7th Global MASLD Congress 25 June 2024

NASDAQ: ALT

Forward-looking statements


Safe-Harbor Statement

This presentation has been prepared by Altimmune, Inc. ("we," "us," "our," "Altimmune" or the "Company") and includes certain "forwardlooking statements" within the meaning of the Private Securities Litigation Reform Act of 1995, including statements regarding the timing of clinical development and funding milestones for our clinical assets as well as statements relating to future financial or business performance, conditions, plans, prospects, trends, or strategies and other financial and business matters, and the prospects for commercializing or selling any product or drug candidates. In addition, when or if used in this presentation, the words "may," "could," "should," "anticipate," "believe," "estimate," "expect," "intend," "plan," "predict" and similar expressions and their variants, as they relate to the Company may identify forwardlooking statements. The Company cautions that these forward-looking statements are subject to numerous assumptions, risks, and uncertainties, which change over time. Important factors that may cause actual results to differ materially from the results discussed in the forward looking statements or historical experience include risks and uncertainties, including risks relating to: potential impacts due to the COVID-19 pandemic such as delays in regulatory review, manufacturing and supply chain interruptions, adverse effects on healthcare systems and disruption of the global economy, the timing and reliability of the results of the studies relating to human safety and possible adverse effects resulting from the administration of the Company's product candidates; our lack of financial resources and access to capital; clinical trials and the commercialization of proposed product candidates (such as marketing, regulatory, product liability, supply, competition, dependence on third parties and other risks); the timing of regulatory applications and the regulatory approval process; dependence on intellectual property and reimbursement and regulation. Further information on the factors and risks that could affect the Company's business, financial conditions and results of operations are contained in the Company's filings with the U.S. Securities and Exchange Commission, including under the heading "Risk Factors" in the Company's annual reports on Form 10-K and quarterly reports on Form 10-Q filed with the SEC, which are available at www.sec.gov. The statements made herein speak only as of the date stated herein, and any forward-looking statements contained herein are based on assumptions that the Company believes to be reasonable as of this date. The Company undertakes no obligation to update these statements as result of new information or future events.

OBESITY AND FATTY LIVER DISEASE

DISEASES WITH UNMET NEED APPROACHING EPIDEMIC PROPORTIONS

The recent successes of semaglutide (Wegovy®) and tirzepatide (Zepbound®) have created optimism for other incretinbased therapies

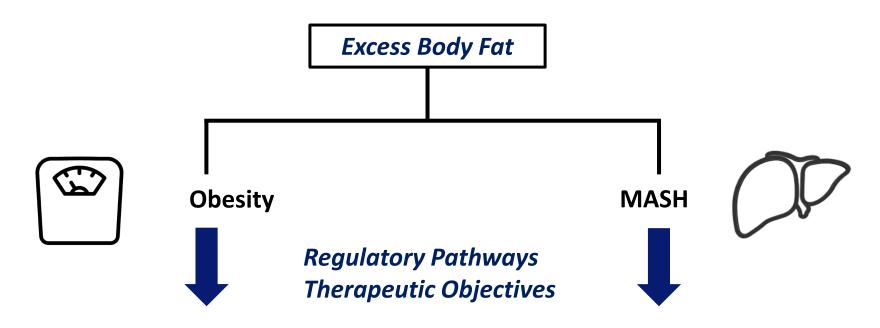
- GLP-1/GCG dual receptor agonists
- GLP-1/ amylin combination agents
- GLP-1/GIP mAb
- Oral GLP-1 monotherapies

GLP-1: glucagon-like peptide-1

GCG: glucagon

mAB: monoclonal Ab

OBESITY-RELATED CO-MORBIDITIES ARE THE MOST FREQUENT CAUSE OF DEATH IN PATIENTS WITH MASLD


Outcome	n (%)
Death or liver transplantation	193 (100.0)
Cardiovascular disease	74 (38.3)
Non-liver cancer	36 (18.7)
Cirrhosis complications	15 (7.8)
Infections	15 (7.8)
HCC	2 (1.0)
Liver transplantation	1 (0.5)
Other	35 (18.1)
Unknown	15 (7.8)

619 patients with biopsy confirmed MASH

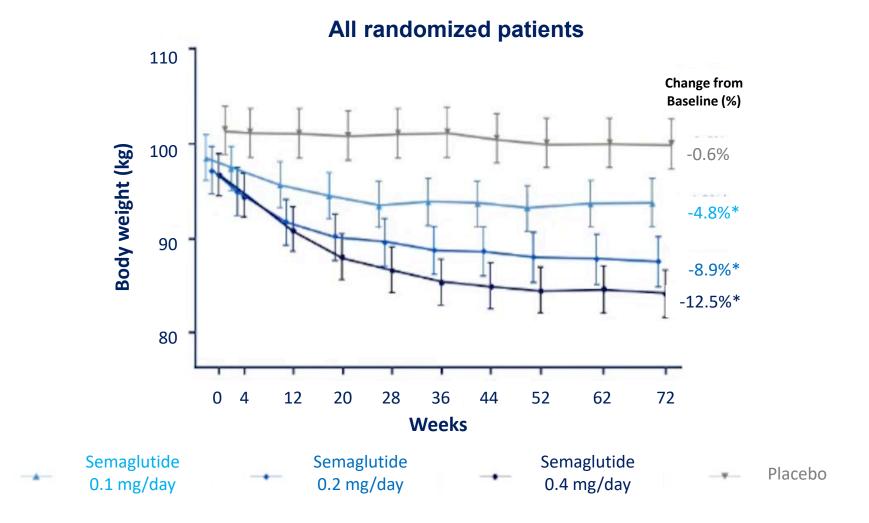
OBESITY AND MASH SYNERGIES

DISTINCT REGULATORY PATHWAYS BUT SIMILAR THERAPEUTIC OBJECTIVES

- Reduce body weight
- Improve serum lipid profile
- Reduce cardiovascular risk factors

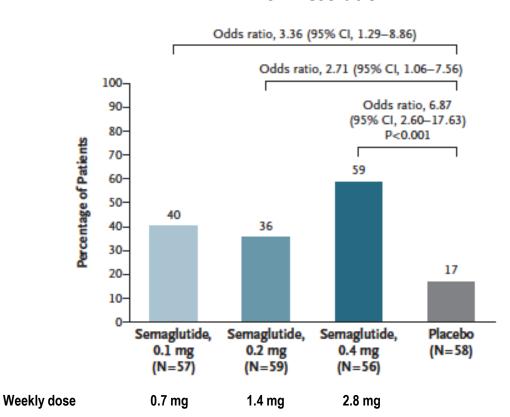
- Reduce liver fat
- Reduce liver inflammation
- Reduce body weight

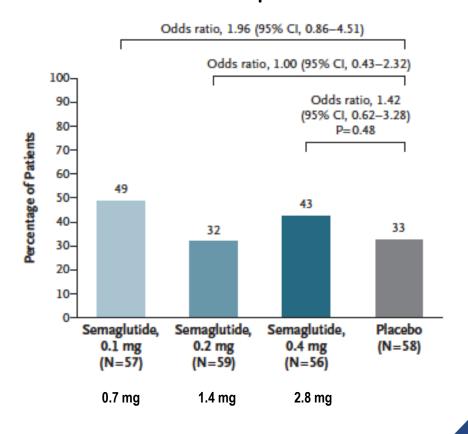
NON-INCRETIN AGENTS FAIL TO ACHIEVE MEANINGFUL WEIGHT LOSS

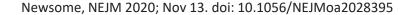

SNAPSHOT OF COMPOUNDS IN ADVANCED MASH DEVELOPMENT

Agent	Mechanism	Change in Body Weight	MASH Resolution	Fibrosis Improvement
Obeticholic acid	FXR agonist	-2%	No	Yes
Resmetirom	THR β agonist	no change	Yes	Yes
Lanifibranor (1200 mg)	PanPPAR	+3.1%	Yes	Yes
Pegozafermin	FGF21 agonist	-0.6%	Yes	Yes
Efruxifermin (70 mg)	FGF21 agonist	-2.6%	Yes	Yes

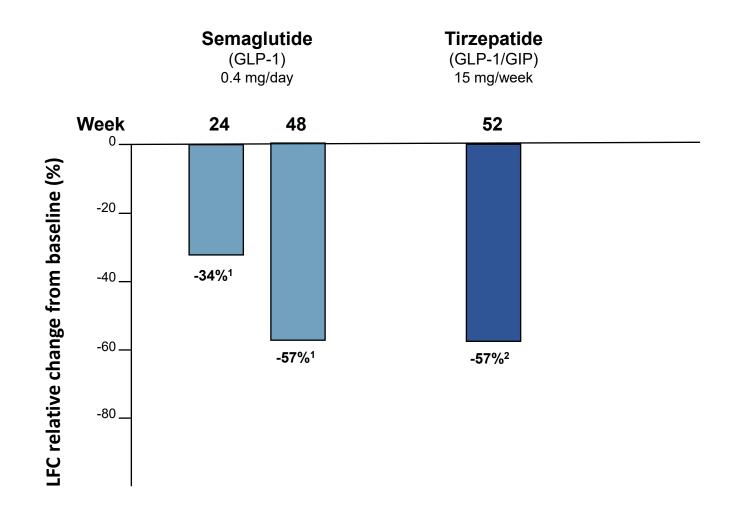
SEMAGLUTIDE—WEIGHT LOSS IN PHASE 2 MASH CLINICAL TRIAL


SUBJECTS WITH AND WITHOUT DIABETES

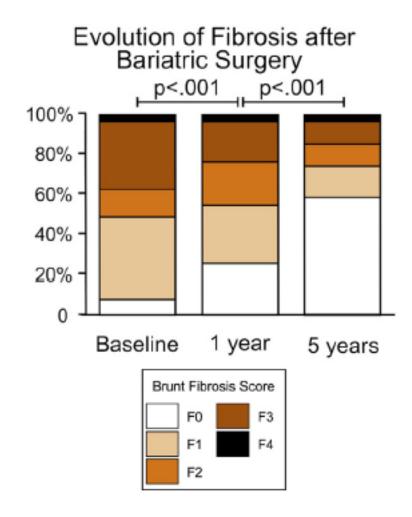

SEMAGLUTIDE—MASH RESOLUTION WITHOUT FIBROSIS IMPROVEMENT


RESULTS OF A 68-WEEK, PHASE 2, MULTICENTER TRIAL

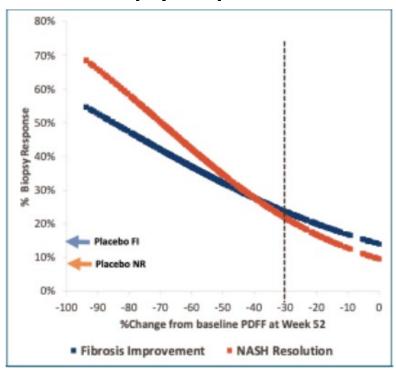
MASH Resolution

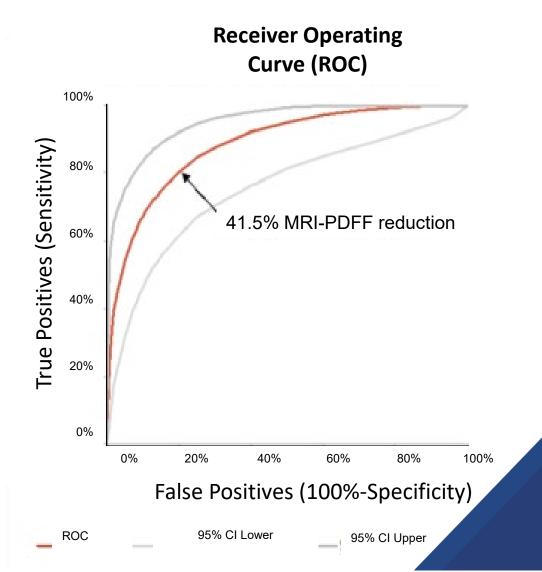

Fibrosis Improvement

GLP-1 AND GIP AGENTS HAVE ONLY MODEST EFFECTS ON LIVER FAT CONTENT


EFFECTS DRIVEN BY SOLELY BY WEIGHT LOSS DUE TO ABSENCE OF GLP-1 AND GIP RECEPTORS IN LIVER

¹ Flint, Aliment Pharm Ther 2021; ² Sanyal EASL 2024


THE IMPACT OF WEIGHT LOSS ON LIVER FIBROSIS MAY BE SLOW


IMPROVEMENT ON FIBROSIS MAY TAKE AS LONG 5 YEARS IN THE ABSENCE OF DIRECT LIVER EFFECTS

MRI-PDFF REDUCTION STRONGLY PREDICTED OF BIOPSY RESPONSES ON NASH RESOLUTION AND FIBROSIS IMPROVEMENT

Relationship of Δ MRI-PDFF and Biopsy Response

FIBROSIS IMPROVEMENT DRIVEN BY LIVER FAT REDUCTION

Fibrosis Improvement Achieved

Compound Dose	Mechanism	Liver Fat Reduction	Duration of Treatment	Fibrosis Improvement			
				Treatment	Placebo	Δ	
Resmetirom	100 mg QD	THR-β	48%	52 weeks	26%†	14%	12%
Pegozafermin	44 mg Q2W	FGF21	54%	24 weeks	27%†	7%	20%
Tirzepatide	15 mg QW	GLP-1/GIP	57%	52 weeks	51%	30%	21%
Survodutide	6.0 mg QW	GLP-1/GCG	64%	48 weeks ²	42%	18%	24%
Efruxifermin	50 mg QW	FGF21	64%	24 weeks	41%†	20%	21%
Pemvidutide	1.8 mg QW	GLP-1/GCG	75%	24 weeks	TBD	TBD	TBD

Fibrosis Improvement Not Achieved

Compound	Doso	Machanism	Liver Fat	Duration of	Fibr	Fibrosis Improvement	
Compound	Dose Mechanism Reduction Treatmen	Treatment	Treatment	Placebo	Δ		
Semaglutide	0.4 mg QD	GLP-1	30-35% ¹	72 weeks	43%	33%	10%

GLP-1/GLUCAGON DUAL RECEPTOR AGONISTS

Optimized for weight loss and MASH

Designed for significant reductions in:

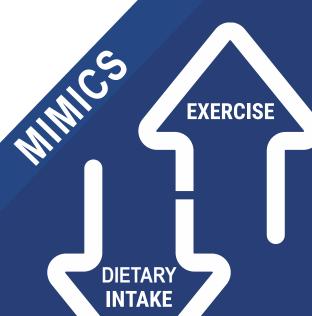
BODY WEIGHT

LIVER FAT, INFLAMMATION, & RESULTING FIBROSIS

GLP-1

Indirect effects on liver

Direct effects on liver


GLUCAGON

energy expenditure

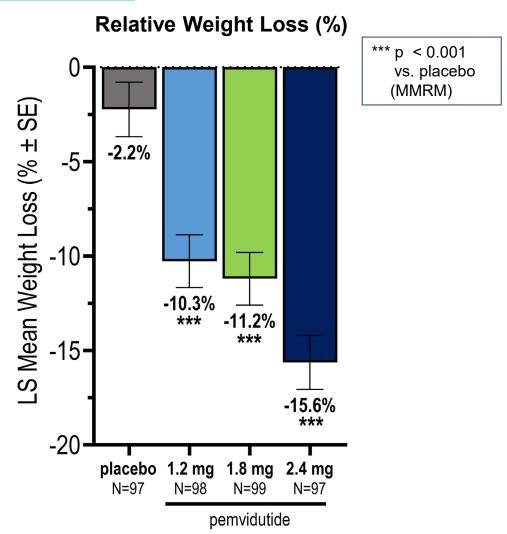
adipose browning

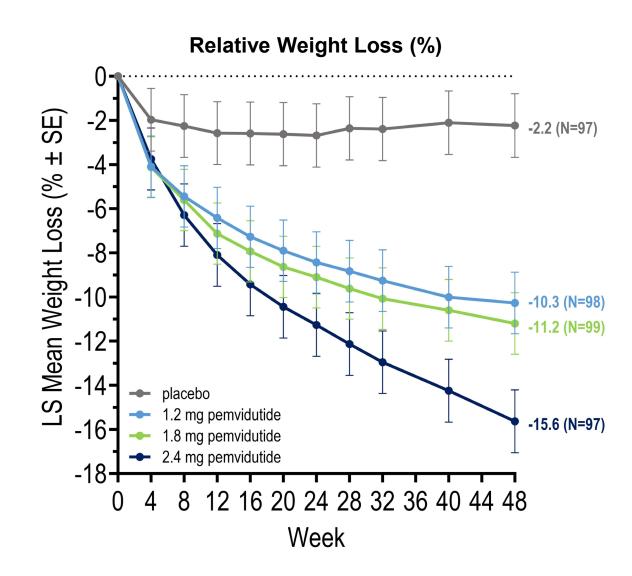
lipolysis

mobilization of liver fat

PEMVIDUTIDE

BALANCED AGONIST WITH PROLONGED SERUM HALF-LIFE AND DELAYED TIME TO PEAK CONCENTRATION




¹Nestor JJ et al, Peptide Science. 2021;113:e24221

Weight Loss of 15.6% Achieved at Week 48 on 2.4 mg

MEAN WEIGHT LOSS OF 32.2 LBS AND MAXIMAL WEIGHT LOSS OF 87.1 LBS

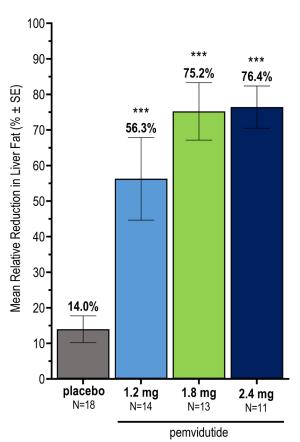
PEMVIDUTIDE—CLASS-LEADING EFFECTS ON LEAN MASS PRESERVATION

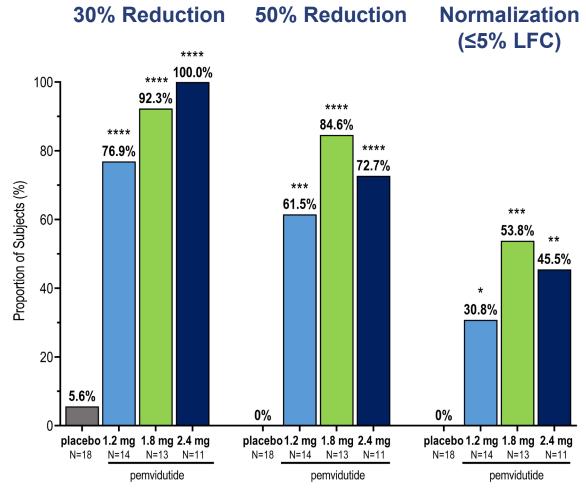
POTENTIALLY SUPERIOR TO THE 25% LEAN LOSS ASSOCIATED WITH DIET AND EXERCISE¹

LEAN LOSS INDEX

Drug	Study	Study duration	LBM loss index
Pemvidutide	MOMENTUM Phase 2	48 weeks	21.9%²
Tirzepatide	SURMOUNT 1 Phase 3	72 weeks	26.0%³
Retatrutide	Phase 2 obesity study	36 weeks	37.7%4
Semaglutide	STEP-1 Phase 3	68 weeks	39.9%5

Lean loss index = loss of lean mass/total mass loss

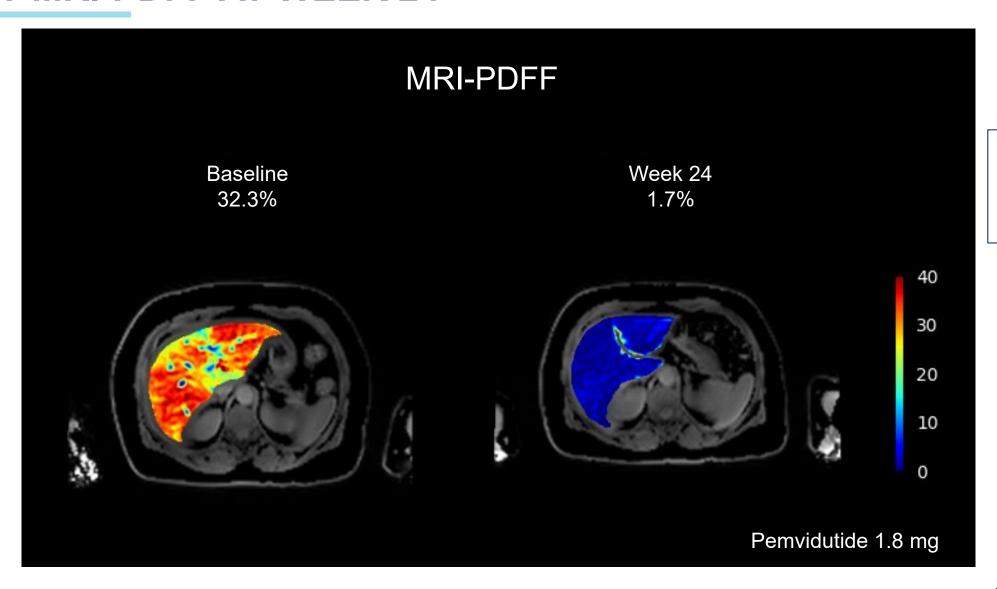

Excessive loss of lean mass has been associated with sarcopenia and bone fractures⁵


1. Heymsfield Obes Rev. 2014 April; 15(4): 310–321; 2. Aronne LA, 84th ADA Meeting, June 2024; 3. Kushner RF, Obesity Week 2022; 4. Harris C, Obesity Week 2023; 5. Wilding JPH, et al. N Engl J Med. 2021 Mar 18;384(11):989-1002.

PEMVIDUTIDE— ROBUST REDUCTIONS IN LIVER FAT CONTENT AT 24 WEEKS

CORRELATES WITH MASH RESOLUTION AND FIBROSIS IMPROVEMENT

Relative Reduction



* p < 0.05, *** p < 0.001, ****, p < 0.0001 vs placebo, Cochran-Mantel-Haenszel

PEMVIDUTIDE— MARKED REDUCTION OF LIVER FAT CONTENT BY MRI-PDFF AT WEEK 24

This reduction was accompanied by a 38.1% decrease in liver volume

GLP-1 BASED AGENTS IN DEVELOPMENT¹ FOR MASH AND OBESITY

HIGH GLUCAGON CONTENT DRIVES POTENT EFFECTS ON LIVER FAT AND BODY WEIGHT

Agent	Class	Agonist Ratios ²	Dose Titration	LFC Reduction	Weight Reduction
Semaglutide	GLP-1		yes	+	++++
Tirzepatide	GLP-1/GIP	1:15	yes	+	++++
Cotadutide	GLP-1/GCG	5:1	yes	++	+
Retatrutide	GLP-1/GIP/GCG	1:6:0.1	yes	++++	++++
Survodutide	GLP-1/GCG	8:1	yes	+++	+++
Efinopegdutide	GLP-1/GCG	2:1	yes	++++	++++
Pemvidutide	GLP-1/GCG	1:1	no	++++	++++

¹ Phase 2 and later; ² based on cell-based potency assays GLP-1, glucagon-like peptide-1; GIP, gastric inhibitory polypeptide; GCG, glucagon

PEMVIDUTIDE— DIRECT ANTI-FIBROTIC EFFECTS IN PRECLINICAL MODEL OF HEPATIC FIBROSIS

- Significant improvement in a model of chemically-induced hepatic fibrosis after 14 days of treatment with pemvidutide
- The model excluded the effects of liver fat reduction, providing evidence for a direct effect of pemvidutide in reducing liver fibrosis

