# Effect of Pemvidutide, a GLP-1/Glucagon Dual Receptor Agonist, on Plasma Lipidomic Profiles in Subjects with Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD)

John J. Suschak<sup>1</sup>, Maynara Andrade<sup>1</sup>, Bertrand Georges<sup>1</sup>, Sarah K. Browne<sup>1</sup>, Cristina Alonso<sup>2</sup>, M. Scott Harris<sup>1</sup>, M. Scot Roberts<sup>1</sup>

# Background

### MASLD and MASH ARE HEPATIC MANIFESTATIONS OF OBESITY

- Approximately 70% of people with either obesity or MASH have dysregulated serum lipid profiles
- Dyslipidemia can result in increased hepatic and systemic inflammation, exacerbating comorbidities such as cardiovascular disease and insulin resistance
- The primary morbidity associated with MASH is due to cardiovascular events as opposed to liver-specific events
- Pemvidutide is a long-acting GLP-1/glucagon dual receptor agonist under development for the treatment of MASH and obesity
- Pemvidutide achieved up to 15.6% weight loss in a 48-week clinical trial of subjects with obesity (NCT05295875)

## Pemvidutide MOA is optimized for MASH and obesity



 The 1:1 ratio of GLP-1 and glucagon agonism, as found in pemvidutide, was shown to provide the optimal balance of efficacy and safety (Day et al. 2012)

## Aims

• To analyze the change in plasma lipidomic profile of subjects with overweight/obesity and MASLD following pemvidutide treatment.

## Methods and Study Design

- Plasma samples from study completers were analyzed for changes in:
  - Lipoproteins by nuclear magnetic resonance (NMR)
  - MASH-associated phospholipids and sphingolipids by ultra-high performance liquid chromatography-mass spectrometry (UHPLC-MS)

### **Study Population – Key Eligibility Criteria**

- Clinicaltrials.gov# NCT05006885 (Harrison et al. 2024)
- Men and women, ages 18-65 years
- BMI ≥ 28 kg/m<sup>2</sup>
- MASLD, defined as liver fat content (LFC) by MRI-PDFF  $\geq$  10%
- Absence of significant fibrosis, defined as FibroScan<sup>®</sup> LSM < 10kPa</li>
- Non-diabetes OR diabetes if:
  - Stable dose ( $\geq$  3 months) metformin or SGLT-2 therapy AND
  - No use of insulin, sulfonylureas, DPP-4, GLP-1 treatment
  - HbA1c < 9.5%
- Alanine aminotransferase (ALT) and aspartate aminotransferase (AST) laboratory values  $\leq$  75 IU/L

### Phase 1b MASLD Study Design

arms, stratified by the presence or absence of type 2 diabetes (T2D)



### **Baseline Characteristics of Study Participants**

| Characteristic                 |                     | Treatment     |                  |                  |                  |
|--------------------------------|---------------------|---------------|------------------|------------------|------------------|
|                                |                     | PBO<br>(N=24) | 1.2 mg<br>(N=23) | 1.8 mg<br>(N=23) | 2.4 mg<br>(N=24) |
| Age, years                     | mean (SD)           | 47.9 (14)     | 48.6 (11)        | 50.3 (9)         | 48.8 (8)         |
| Gender                         | female, n (%)       | 14 (58.3%)    | 9 (39.1%)        | 12 (52.2%)       | 15 (62.5%)       |
| Race                           | white, n (%)        | 21 (87.5%)    | 21 (91.3%)       | 20 (87.0%)       | 24 (100%)        |
|                                | other, n (%)        | 3 (12.5%)     | 2 (8.7%)         | 3 (13.0%)        | 0 (0.0%)         |
| Ethnicity                      | Hispanic, n (%)     | 14 (58.3%)    | 20 (87.0%)       | 19 (82.6%)       | 18 (75.0%)       |
|                                | non-Hispanic, n (%) | 10 (41.7%)    | 3 (13.0%)        | 4 (17.4%)        | 6 (25.0%)        |
| <b>BMI</b> , kg/m <sup>2</sup> | mean (SD)           | 36.9 (4.7)    | 36.3 (5.6)       | 35.4 (3.9)       | 35.3 (5.0)       |
| Body weight, kg                | mean (SD)           | 105.1 (20.8)  | 102.4 (14.6)     | 98.9 (19.7)      | 98.2 (18.9)      |
| Diabetes status                | T2D, n (%)          | 6 (25.0%)     | 7 (30.4%)        | 7 (30.4%)        | 7 (33.3%)        |
| Liver fat content (LFC), $\%$  | mean (SD)           | 23.8 (9.2)    | 21.6 (7.3)       | 21.8 (8.0)       | 20.2 (7.0)       |
| ALT, IU/L                      | mean (SD)           | 39.5 (21.4)   | 32.4 (13.8)      | 36.4 (15.6)      | 37.8 (24.4)      |
| Triglycerides, mg/dL           | mean (SD)           | 169.3 (90.1)  | 224.9 (119.1)    | 192.2 (114.9)    | 220.0 (169.3)    |
| Total cholesterol, mg/dL       | mean (SD)           | 181.4 (39.0)  | 186.9 (44.8)     | 200.0 (35.2)     | 182.2 (39.7)     |
| LDL cholesterol, mg/dL         | mean (SD)           | 100.0 (38.2)  | 100.2 (34.3)     | 116.6 (33.6)     | 101.3 (33.0)     |

### **Reduction in Liver Fat Content by MRI-PDFF**

### **Absolute Reduction**



<sup>1</sup>Analysis of Covariance; placebo vs. treatment at Week 12

<sup>1</sup>Altimmune, Inc, Gaithersburg, MD, USA; <sup>2</sup>OWL Metabolomics, Derio, Spain

• Ninety-four subjects were randomized across 13 US sites to 1 of 4 treatment

## Results



**Rapid Reduction in Atherogenic Lipoproteins** 

**Changes in Particle Number by NMR** 

|                      | PBO<br>(N=12) | Pemvidutide     |                 |                |
|----------------------|---------------|-----------------|-----------------|----------------|
| Lipoprotein Particle |               | 1.2mg<br>(N=15) | 1.8mg<br>(N=15) | 2.4mg<br>(N=7) |
| VLDL-P               |               | *               | ***             | *              |
| Large VLDL-P         |               | *               | **              | **             |
| Medium VLDL-P        |               |                 |                 |                |
| Small VLDL-P         |               | *               | ***             | **             |
| LDL-P                |               |                 | **              |                |
| Large LDL-P          |               |                 |                 |                |
| Medium LDL-P         |               |                 | *               |                |
| Small LDL-P          |               |                 | **              | *              |

Significant changes in lipid particle numbers. The color code represents the log<sub>2</sub>(robust fold-change from baseline to Week 6). Only showing threshold change  $\geq 0.2$ . Wilcoxon signed rank test p-values: \*p < 0.05, \*\*p < 0.01, \*\*\*p < 0.001, vs. baseline,

(%)

ठे

3.4%

### **Reduction in Plasma Lipotoxic Lipid Classes**



### Hepato-Inflammatory Lipids Lysophosphatidylethanolamine



-10- $\top$ -15**-**-12.6% \*\*\* -20--17.7% -20.1% \*\*\* -25-\*\*\* PBO 1.2 mg 1.8 mg 2.4 mg N=13 N=15 N=15 N=7

Lysophosphatidylinositol

(All 13 Subspecies)



### Atherosclerotic Lipids **Ceramides + CMH**

(All 16 Subspecies)



<sup>1</sup>Analysis of Covariance; placebo vs. treatment at Week 12

**Relative Reduction** 

## Conclusions

- Pemvidutide administered weekly over 12 weeks resulted in:
  - Significant reductions in liver fat content within 12 weeks
  - Decreases in atherogenic small LDL-C
  - Decreases in MASH-associated phospholipid and sphingolipid species
  - Decreases in cardio-inflammatory lysophosphatidylcholines and lysophosphatidylinositols that may reduce cardiovascular disease (Aiyar et al. 2007; Xu et al. 2021)
  - Decreases in lysophosphatidylethanolamines that may reduce fat accumulation in MASH patient livers (Yamamoto et al. 2022)
  - Decreases in ceramides and monohexosylceramides that may decrease atherosclerotic lesions (Choi et al. 2021)
- These findings support perivdutide's potential benefit on MASH-associated co-morbidities, including atherosclerosis, cardio-inflammation and metabolic syndrome
- Pemvidutide is being evaluated in an ongoing biopsy-confirmed, 24-week Phase 2b MASH trial (IMPACT: NCT05989711)



## **Reduced Systemic and Hepatic Lipotoxicity**

### **References/Citations**

Day, J et al. Peptide Science 2021 PMID 23203689 Harrison, SA et al. J Hepatology 2024 PMID 39002641 Aiyar, N et al. Mol Cell Biochem 2007 PMID 16896535 Xu, K et al. Front Cardiovasc Med 2021 PMID 34912867 Yamamoto, Y et al. Nutrients 2022 PMID 35276938 Choi, RH et al. Nat Rev Cardiol 2021 PMID 33772258 Conclusions diagram created with BioRender.com



\*\*\* p < 0.001

(ANCOVA<sup>1</sup>)