

Pemvidutide significantly decreased serum lipids including inflammatory lipid sub-species at Week 12.

Figure 1. Pemvidutide treatment yielded significant decreases in serum lipids in subjects with overweight/obesity at Week 12. Relative change in serum lipids. pvalues: **p*<0.05, ***p*<0.005, ****p*<0.001, vs. placebo

Linid	Common	Individual	PRO	Pe	mviduti	de
Class	name	notation	(n=10)	1.2mg (n=6)	1.8mg (n=9)	2.4mg (n=9)
		LPI(18:1)		*		**
Glycerophospholipids	Lyco Pl	LPI(18:1)		*	*	**
	Ly 50-F1	LPI(18:2)		*		**
		LPI(18:2)		*		**
	Lyso-PC	PC(18:3/0:0)			***	
	Ly 50-FC	PC(0:0/14:0)		**	***	***
		PE(16:1/0:0)			***	***
		PE(20:3/0:0)			***	**
	Ly so-PE	PE(0:0/16:1)		**	***	
		PE(0:0/18:2)			***	**
		PE(0:0/20:3)		**	***	**
	Coromidoo	Cer(d18:1/24:0)		**	**	***
Sphingolipids	Ceramides	Cer(d18:1/23:0)	**	**	**	**
	СМН	CMH(d18:1/24:0)		**	***	***
	Sphingom yelin	SM(d18:1/12:0)			**	***
Sterols	Steroid sulfates	Andros-S			**	***
		GlycA	*	*	*	*
		GlycB				×
Glycoproteins	Acetyls	GlycF	*	*	*	*
		H/W Glyc-A				*
		H/W Glyc-B				*
	Gly co-conjugated	GDCA				**
Bilo A oide		TCA				
Dire Acius	Tauro-conjugated	TDCA				*
		TCDCA				*

Figure 2. Pemvidutide treatment improved MASH-associated lipotoxic species in subjects with overweight/obesity at Week 12. Changes in phospholipid subspecies, sterols, inflammatory glycoproteins, and bile acids. The color code represents the log₂(robust fold-change). Wilcoxon signed rank test p-values: *p<0.05, **p<0.01, ***p<0.001, vs. baseline.

Contact information

John J. Suschak: https://altimmune.com/

Plasma lipidomic profiling of subjects with overweight or obesity following treatment with the glucagon-like peptide 1/glucagon dual receptor agonist pemvidutide: an investigation of lipid signatures associated with metabolic dysfunction-associated steatohepatitis altimmune

J. Suschak¹, B. Georges¹, S. Browne¹, C. Alonso², <u>S. Roberts¹</u>, S. Harris¹ ¹Altimmune, Inc; Gaithersburg, MD, USA; ²OWL Metabolomics, Derio, Spain

Introduction

- Approximately 70% of people with either obesity or MASH have dysregulated serum lipid profiles, with high levels of lipids and toxic lipid species associated with increased cardiovascular risk,
- Dyslipidemia can result in increased hepatic and systemic inflammation, exacerbating comorbidities such as cardiovascular disease and insulin resistance
- Pemvidutide is a balanced glucagon-like peptide 1 (GLP-1)/glucagon dual receptor agonist in clinical development for the treatment of MASH and obesity
- Pemvidutide achieved up to 15.6% weight loss in a 48-week clinical trial of subjects with obesity and 68.5% relative liver fat reduction in a 12-week clinical trial of subjects with MASLD

Aim

To analyze the change in lipidomic profile of subjects with overweight/obesity (NCT04561245) or overweight/obesity and MASLD (NCT05006885) following pemvidutide treatment

Methods

- Subjects with overweight/obesity or overweight/obesity and MASLD were treated with pemvidutide (1.2 mg, 1.8 mg, 2.4 mg) or placebo administered subcutaneously weekly for 12 weeks
- Plasma samples from study completers were analyzed by ultra-high performance liquid chromatography–mass spectrometry (UHPLC-MS) or nuclear magnetic resonance (NMR) at baseline, Week 6, and Week 12

Results

- Pemvidutide achieved significant reductions from baseline across multiple glycero- and phospholipid sub-species associated with MASH, including triglycerides, lysophosphatidylinositols (Lyso-PI) and lysophosphatidylethanolamines (Lyso-PE)
- Pemvidutide treatment resulted in significant reductions in atherosclerotic sphingolipids including ceramides
- Pemvidutide improved bile acid dysregulation, yielding reductions in glycol- and tauroconjugated bile acids

Conclusions

- Pemvidutide administered weekly resulted in significant improvements in plasma lipidomic profiles, including reductions in triglycerides and MASH-associated glycero- and phospholipid species at 12 weeks of treatment
- Decreases in cardio-inflammatory Lyso-PI and Lyso-PC sub-species may reduce cardiovascular disease
- Lyso-PE decreases may reduce fat accumulation in MASH patient livers (Yamamoto et al. 2022)
- Elevated glycol- and tauro-conjugated bile acids are associated with fibrosis and increased MASLD activity, suggesting that pemvidutide improves these histological factors (Kalhan et al. 2011)
- These findings support pemvidutide's potential benefit on MASH-associated co-morbidities, including atherosclerosis and metabolic syndrome
- These data support the evaluation of pemvidutide in an ongoing biopsy-confirmed, 24-week Phase 2b MASH trial (IMPACT: NCT05989711)

References

- Yamamoto, Y et al. *Nutrients* 2022 PMC8839386
- Kalhan, S et al. *Metabolism* 2011 PMC2950914

Subjects with Obesity

A

Lipid Class		Individual notation		Pem vidutide		
	Common		PBO (n=10)	1.2m g	1.8mg	2.4mg
			((n=6)	(n=9)	(n=9)
		LPI(18:1)				**
	Lyco Pl	LPI(18:1)				**
	Lyso-Pi	LPI(18:2)				**
		LPI(18:2)			**	
		PC(18:3/0:0)			***	***
	Lyso-PC	FO(10.0/0.0)			**	***
ceropnospholipids		PC(0:0/14:0)				
		PE(16:1/0:0)		**	**	***
		PE(20:3/0:0)				***
	Lyso-PE	PE(0:0/16:1)			**	
		PE(0:0/18:2)			**	**
		PF(0:0/20:3)			**	**
	Ceramides	Cor(d40:4/04:0)		**	**	••
		Cer(018.1/24.0)				
hingolipids		Cer(d18:1/23:0)		**	**	***
	СМН	CMH(d18:1/24:0)		**	***	***
	Sphingomyelin	SM(d18:1/12:0)			**	***
erols	Steroid sulfates	Andros-S			**	***
Gly cop roteins A ce		GlycA			*	**
		Cluck				*
		GIYEB				
	Acetyls	GlycF			×	*
		H/W Glyc-A				**
		H/W Glyc-B				*
	Gly co-conjugated	GDCA				**
		ТСА				*
le A cids	Tauro-conjugated	трса				**
	lauro-conjugated	TODA				**
		TCDCA				

Figure 3. Pemvidutide treatment improved MASH-associated lipids in subjects with overweight/obesity at Week 6. (A) Changes in phospholipid sub-species, sterols, inflammatory glycoproteins, and bile acids. (B) Changes in triglyceride sub-species. The color code represents the $\log_2(robust fold-change from baseline)$. Wilcoxon signed rank test p-values: *p<0.05, **p<0.01, ***p<0.001, vs. baseline.

Subjects with MASLD

Lipid	Common	Individual	PBO	Pe	em vidutide		B	Lipid	Individual	PRO	Pe	mviduti	nvidutide	
Class	name	notation	(n=13)	1.2mg (n=15)	1.8mg (n=15)	2.4mg (n=7)	υ.	Class	notation	(n=13)	1.2mg (n=15)	1.8mg (n=15)	2.4mg (n=7)	
Glycerophospholipids		LPI(16:0)			**				TG(44:1)			**	**	
		LPI(18:1)			**				TG(44:2)			**	**	
		LPI(18:1)							TG(45:1)			**	**	
	Lyso-Pl	LPI(18:2)	**	**	***				TG(46:0)			**	**	
		LPI(18:2)				**			TG(46:1)			**	**	
		L PI(20:3)			**	**			TG(40.2) TG(46:3)			**	**	
		PC(18:3/0:0)			***				TG(46:3)			***	**	
	Lyco-PC	PC(0:0/14:0)							TG(47:0)			**	**	
	Lyso-FC	PC(0.0/14.0)			***	**			TG(47:1)			**	**	
		PC(14:0/0:0)			***	**			TG(47:2)			**	**	
		PE(20:3/0:0)				**			TG(48:0)			**	**	
	Lvso-PE	PE(0:0/16:1)		***	**	<u> </u>			TG(48:1)			**	**	
	-,	PE(0:0/18:2)		**	***	**			TG(48:2)			**	**	
		PE(0:0/20:3)		**	***	**		Triacy Igly cerols	TG(48:3)			***	**	
	Ceramides	Cer(d18:1/21:0)			** *	**			TG(49:1)			**	**	
		Cer(d18:1/22:0)	222		** *	**			TG(49:2)			**	**	
		Cer(d18:1/24:0)			***				TG(49:3)			***	**	
		Cer(d18:1/23:0)	NN'		**	**			TG(50:0)			**	**	
		CMH(d18·1/23·0)			**				TG(50:1)			***	**	
Sphingolipids	смн	CMH(d18:1/24:0)		**	***	**			TG(50:2)			***	**	
		SM(d18:0/22:0)			***				TG(50:3)			**	**	
Spl	Sphingom y elin	SM(d18:1/12:0)		**	**				TG(50.4) TG(51:1)			**	**	
		SM(d10:1/12:0)			***				TG(51:1)			**	**	
		SM(d10:1/25:0)			**				TG(51:3)			**	**	
Stavala	Staraid aulfataa	Sivi(016.1/20.0)		**	***				TG(52:1)			**	**	
Sterois	Steroid suitates	Andros-S			**				TG(53:1)			**		
Bile Acids	Gly co-conjugated	GDCA						TG(53:2)			**			
		ТСА			**				TG(53:3)			**		
	Tauro-conjugated	TDCA							TG(54:0)			**		
		TCDCA			**				TG(54:1)			**	**	

Figure 4. Pemvidutide treatment improved MASH-associated lipids in subjects with MASLD at Week 6. (A) Changes in phospholipid sub-species, sterols, and bile acids. (B) Changes in triglyceride sub-species. The color code represents the log₂(robust fold-change from baseline). Wilcoxon signed rank test *p*-values: ***p*<0.01, ****p*<0.001, vs. baseline.