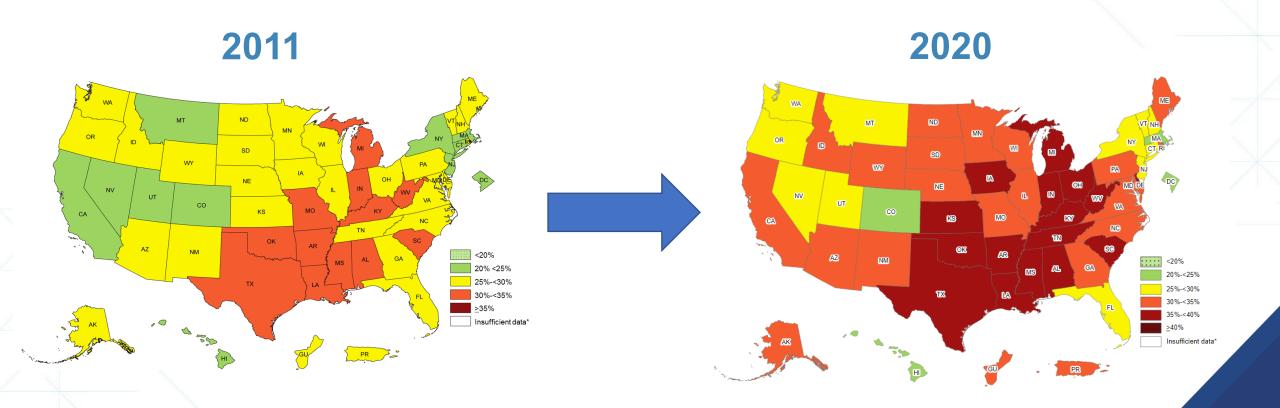
Emerging Weight Loss Therapeutics and Implications for the NASH Treatment Paradigm

M. Scott Harris, MD
Chief Medical Officer
Altimmune, Inc.
5th Global NASH Congress

5th Global NASH Congress 27 May 2022

NASDAQ: ALT

Forward-looking statements


Safe-Harbor Statement

This presentation has been prepared by Altimmune, Inc. ("we," "us," "our," "Altimmune" or the "Company") and includes certain "forwardlooking statements" within the meaning of the Private Securities Litigation Reform Act of 1995, including statements regarding the timing of clinical development and funding milestones for our clinical assets as well as statements relating to future financial or business performance, conditions, plans, prospects, trends, or strategies and other financial and business matters, and the prospects for commercializing or selling any product or drug candidates. In addition, when or if used in this presentation, the words "may," "could," "should," "anticipate," "believe," "estimate," "expect," "intend," "plan," "predict" and similar expressions and their variants, as they relate to the Company may identify forwardlooking statements. The Company cautions that these forward-looking statements are subject to numerous assumptions, risks, and uncertainties, which change over time. Important factors that may cause actual results to differ materially from the results discussed in the forward looking statements or historical experience include risks and uncertainties, including risks relating to: potential impacts due to the COVID-19 pandemic such as delays in regulatory review, manufacturing and supply chain interruptions, adverse effects on healthcare systems and disruption of the global economy, the timing and reliability of the results of the studies relating to human safety and possible adverse effects resulting from the administration of the Company's product candidates; our lack of financial resources and access to capital; clinical trials and the commercialization of proposed product candidates (such as marketing, regulatory, product liability, supply, competition, dependence on third parties and other risks); the timing of regulatory applications and the regulatory approval process; dependence on intellectual property and reimbursement and regulation. Further information on the factors and risks that could affect the Company's business, financial conditions and results of operations are contained in the Company's filings with the U.S. Securities and Exchange Commission, including under the heading "Risk Factors" in the Company's annual reports on Form 10-K and quarterly reports on Form 10-Q filed with the SEC, which are available at www.sec.gov. The statements made herein speak only as of the date stated herein, and any forward-looking statements contained herein are based on assumptions that the Company believes to be reasonable as of this date. The Company undertakes no obligation to update these statements as result of new information or future events.

CDC: OBESITY IN U.S. DRAMATICALLY INCREASING

PREVALENCE OF SELF-REPORTED OBESITY AMONG U.S. ADULTS BY STATE AND TERRITORY¹

OBESITY: SIGNIFICANT BURDEN TO HEALTHCARE SYSTEM

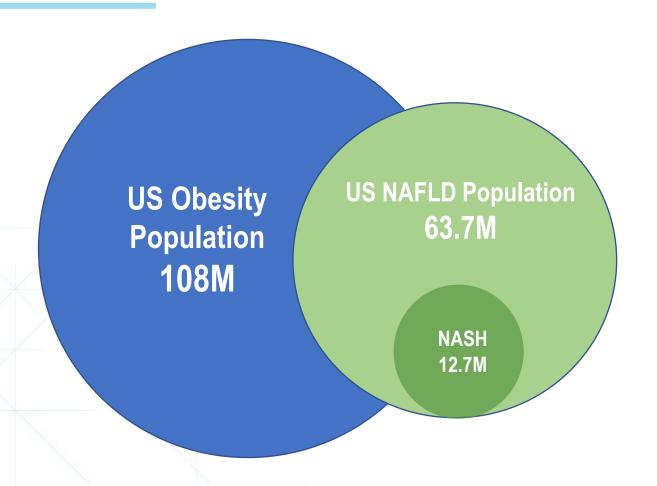
OPPORTUNITY TO ADDRESS MANY COMORBIDITIES THROUGH THE TREATMENT OF OBESITY

IMPACT OF OBESITY

- Obesity is implicated in two thirds of the leading causes of death from noncommunicable diseases worldwide¹
- Total obesity related medical care in the U.S. estimated to be \$147 billion per CDC²
- Global market size for medical weight loss alone was \$8.36 billion in 2020, and is estimated to reach \$27.1 billion by 2028³

COMORBIDITIES

- High blood pressure
- High cholesterol
- Type 2 diabetes
- Coronary heart disease
- Stroke
- Gallbladder disease
- Osteoarthritis
- Sleep apnea and breathing problems
- Certain cancers
- NASH


^{1 -} https://www.sciencedaily.com/releases/2019/10/191024143218.htm

^{2 -} https://www.cdc.gov/obesity/adult/causes.html

^{3 -} https://www.biospace.com/article/obesity-treatment-market-size-to-reach-usd-27-10-billion-in-2028/

OBESITY AND FATTY LIVER DISEASE

DISEASES WITH UNMET NEED APPROACHING EPIDEMIC PROPORTION

- The treatment of obesity is the cornerstone of treating NASH and the principal co-morbidities of NASH^{1,2}
- Previous approaches to the treatment of obesity have been associated with safety concerns limiting success
- The recent success of semaglutide (WegovyTM) has created a regulatory pathway for other incretin-based approaches

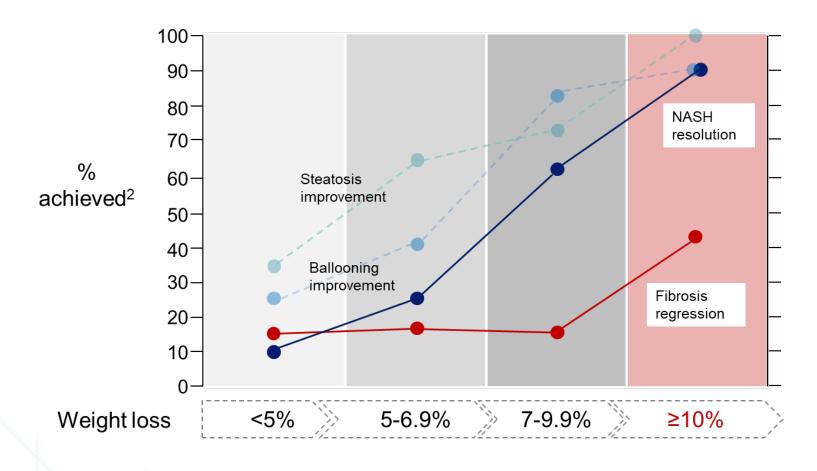
DEATHS IN NAFLD: COMPLICATIONS OF OBESITY

LIVER DISEASE ACCOUNTS FOR ONLY A MINORITY OF DEATHS

Outcome	n (%)		
Death or liver transplantation	193 (100.0)		
Cardiovascular disease	74 (38.3)		
Non-liver cancer	36 (18.7)		
Cirrhosis complications	15 (7.8)		
Infections	15 (7.8)		
HCC	2 (1)		
Liver transplantation	1 (0.5)		
Other	35 (18.1)		
Unknown	15 (7.8)		

619 patients with biopsy confirmed NAFLD (1975-2005)

Median follow-up 12.6 years (range 0.3-35)

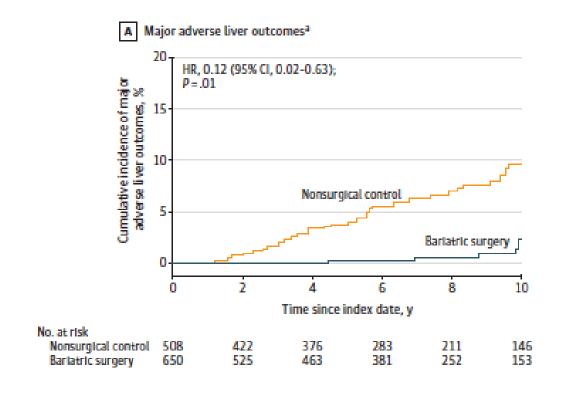

WEIGHT LOSS AND IMPROVEMENT OF OBESITY COMPLICATIONS

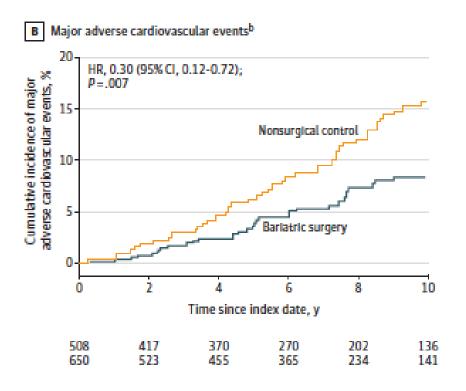
AN EFFECTIVE THERAPY WOULD ACHIEVE AT LEAST 10% WEIGHT LOSS

Complication	Weight Loss Target (%)
NASH	10
Type 2 diabetes	5-15
Hyperlipidemia	10-15
Hypertension	15
Osteoarthritis	5-15
Sleep apnea	10
Gastroesophageal reflux	10-15
Stress incontinence	10

TREATING OBESITY IS THE CORNERSTONE OF NASH THERAPY

10% OR MORE WEIGHT LOSS MUST BE ACHIEVED1


¹ Promrat et al Hepatology 2010; Glass et al Dig Dis Sci 2015; Vilar-Gomez et al Gastroenterology 2015; Marchesini et al Hepatology 2016; Koutowkidis et al JAMA Intern Med 2019



²Adapted from Harrison, EASL 2019, Traber, Discovery on Target: Targeting NASH 2019, and Vilar-Gomez, Gastroenterology 2015

BARIATRIC SURGERY IMPROVES NASH OUTCOMES

LOWERS ADVERSE LIVER OUTCOMES AND MAJOR ADVERSE CARDIOVASCULAR EVENTS

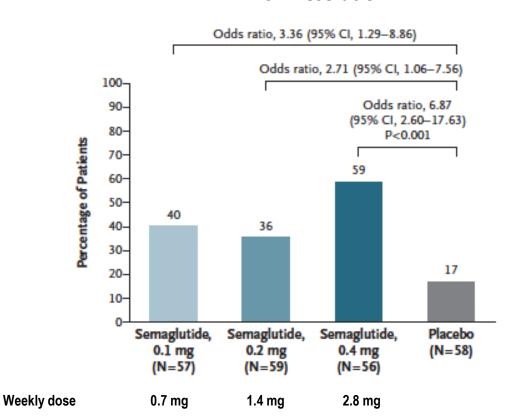
Aminian, JAMA 2021

MOST NASH AGENTS FAIL TO ACHIEVE MEANINGFUL WEIGHT LOSS

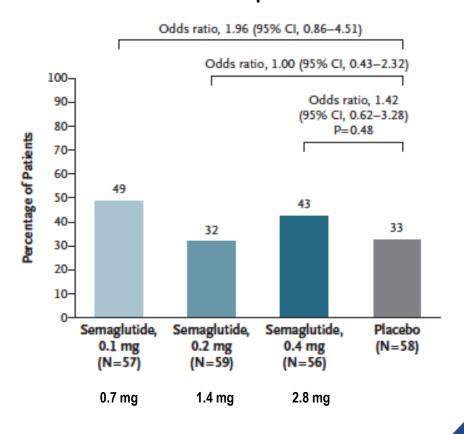
SNAPSHOT OF COMPOUNDS IN ADVANCED NASH DEVELOPMENT

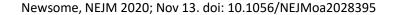
Agent	Author (year)	Mechanism	Weight Loss (%)
Obeticholic acid	Younossi, ZM 2019 ¹	FXR agonist	~2%
Resmetirom	Harrison, SA 2018 ²	THRβ agonist	no change
Aldafermin (3mg) [†]	Harrison, SA 2019 ³	FGF19 agonist	1.3%
Pegbelfermin (10 mg) ^{††}	Sanyal, A 2018 ⁴	FGF21 agonist	2.2%
AKR-001 (70 mg)	Ritchie, M 2020 ⁵	FGF21 agonist	no change; 3.7%†††
Firsocostat	Lawitz, EJ 2018 ⁶	ACC inhibitor	no change
Lanifibranor (1200 mg)	Franque, S 2020 ⁷	PanPPAR	increases 3.1%

[†] No information has been made public on 1mg dose


^{††} Gain of 0.6% on 20mg dose

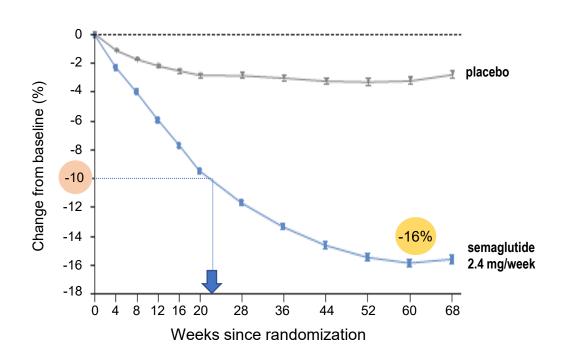
^{†††} BALANCED study (June 30 corporate deck)

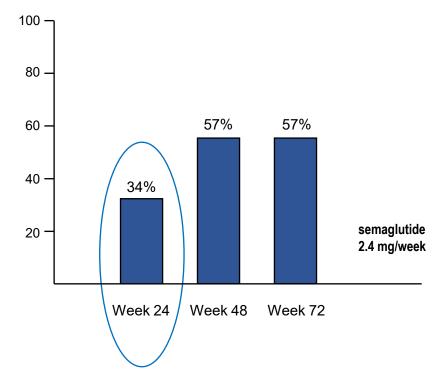

SEMAGLUTIDE—NASH RESOLUTION WITHOUT FIBROSIS IMPROVEMENT


RESULTS OF A 68-WEEK, PHASE 2, MULTICENTER TRIAL

NASH Resolution

Fibrosis Improvement

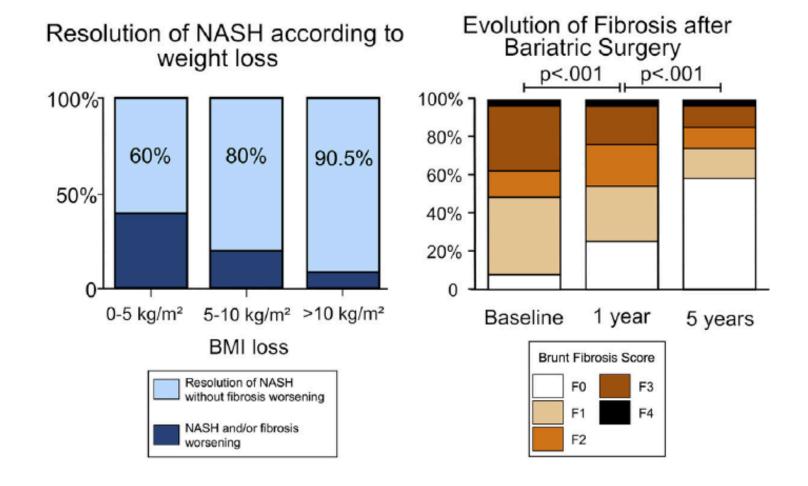



SEMAGLUTIDE—DELAYED REDUCTIONS IN BODY WEIGHT AND LIVER FAT

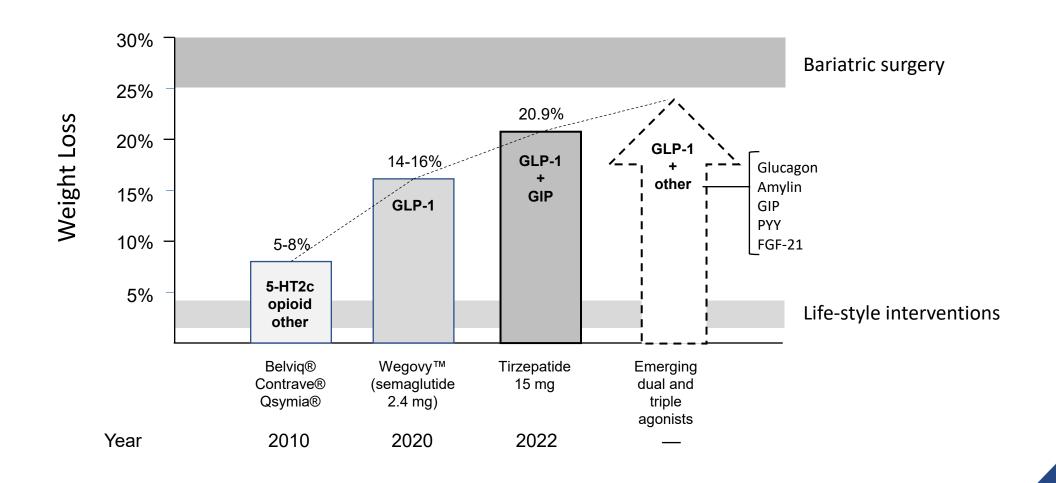
FIBROSIS IMPROVEMENT MAY NOT HAVE BEEN REALIZED WITHIN TREATMENT PERIOD

Body weight, % change from baseline

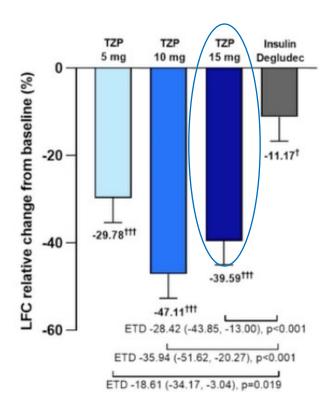
LFC, relative reduction (%), estimated at 24, 48 and 72 weeks

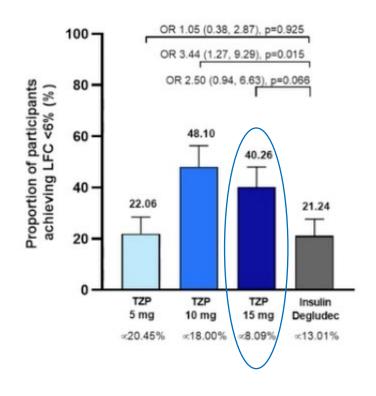


LFC, liver fat content


BARIATRIC SURGERY IS A POTENT NASH THERAPY

BUT THE TIME COURSE FOR FIBROSIS IMPROVEMENT DUE TO WEIGHT LOSS ALONE MAY BE EXTENDED


EMERGING THERAPIES DRAW CLOSER TO THE WEIGHT LOSS ACHIEVED BY BARIATRIC SURGERY


TIRZEPATIDE (GLP-1/GIP) — LOW TO MODERATE REDUCTION IN LFC

ABSENCE OF DIRECT EFFECTS OF GLP-1 AND GIP ON LIVER

LFC, relative reduction (%) at 52 weeks

LFC, proportion of subjects achieving < 6% at 52 weeks

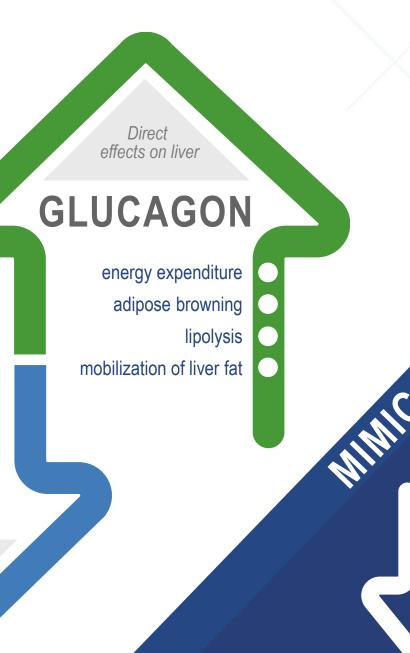
LFC, liver fat content

PEMVIDUTIDE¹ (ALT-801) DUAL RECEPTOR AGONIST

Optimized for weight loss and NASH

Designed for significant reductions in:

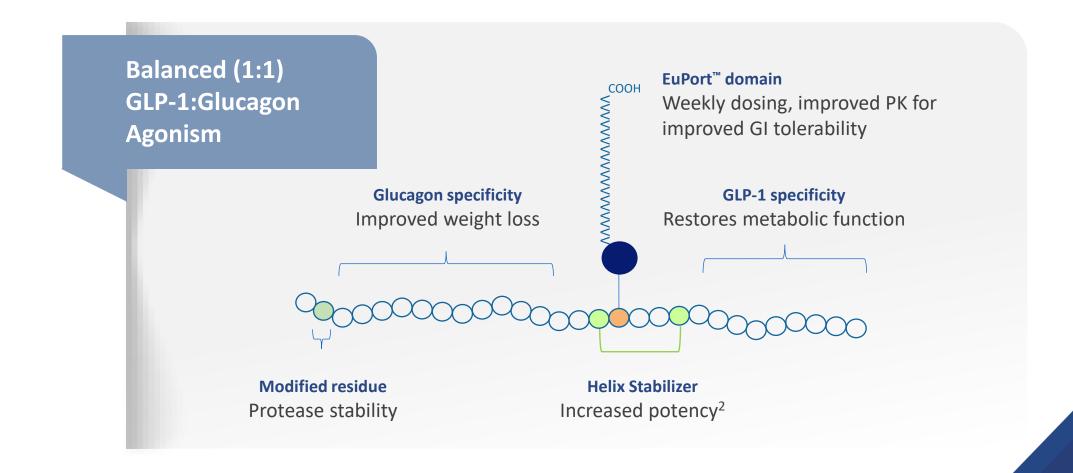
BODY WEIGHT



LIVER FAT, INFLAMMATION, & RESULTING FIBROSIS

GLP-1

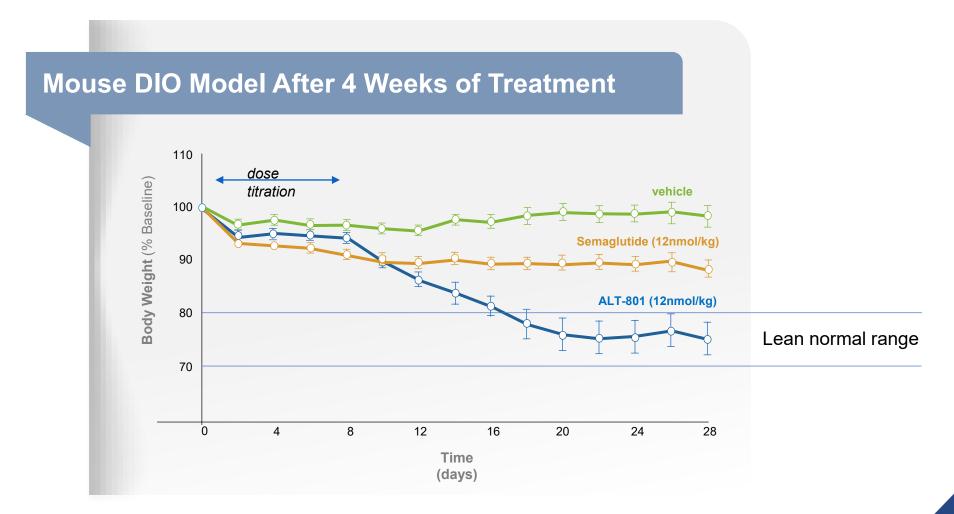
Indirect effects on liver



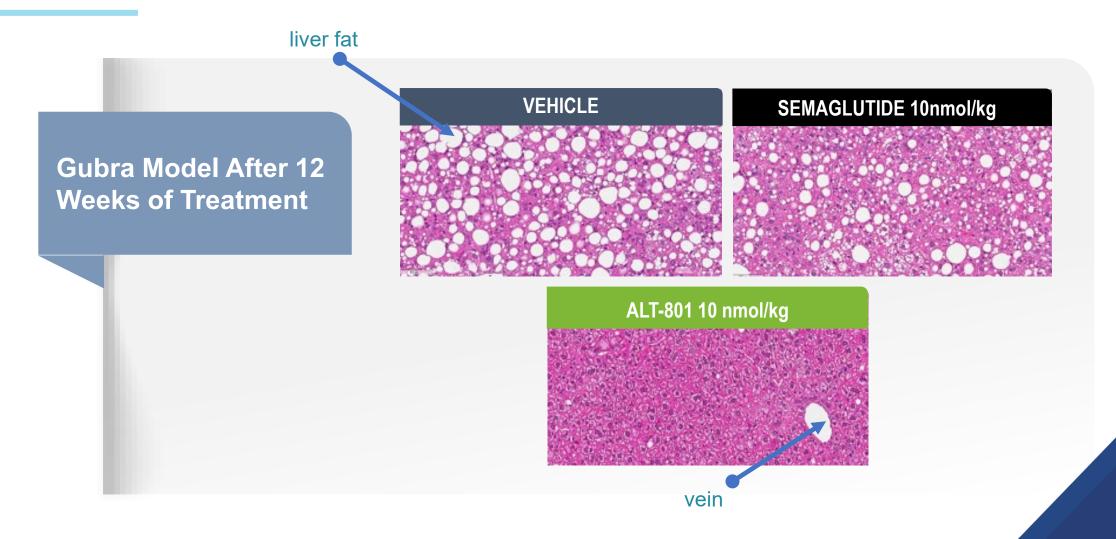
EXERCISE

DIETARY INTAKE

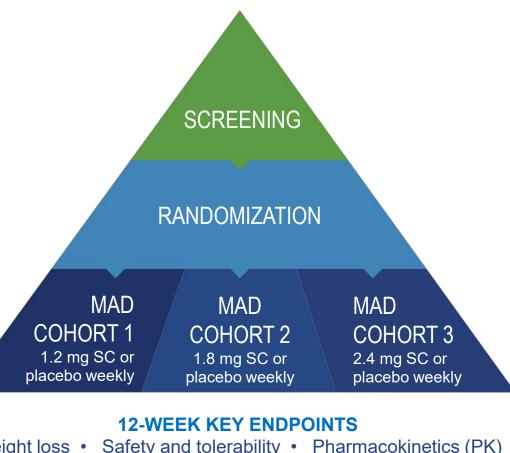
PEMVIDUTIDE (ALT-801)


BALANCED (1:1) DUAL AGONIST WITH ENHANCED PHARMACOKINETIC PROPERTIES

PEMVIDUTIDE (ALT-801) IN MOUSE DIET-INDUCED OBESITY (DIO) MODEL


2-FOLD GREATER WEIGHT REDUCTION THAN GLP-1 MONOTHERAPY AND TO LEAN NORMAL RANGE

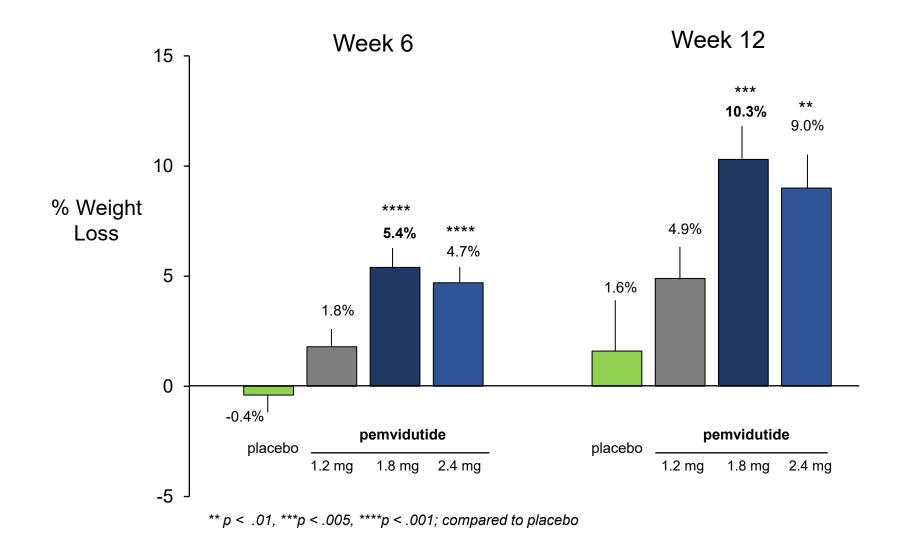
PEMVIDUTIDE (ALT-801) IN GUBRA MOUSE MODEL OF NASH


SUPERIOR EFFECTS VS GLP-1 MONOTHERAPY—LIVER FAT REDUCED TO ALMOST UNDETECTABLE LEVELS

PEMVIDUTIDE PHASE 1— MAD TRIAL DESIGN

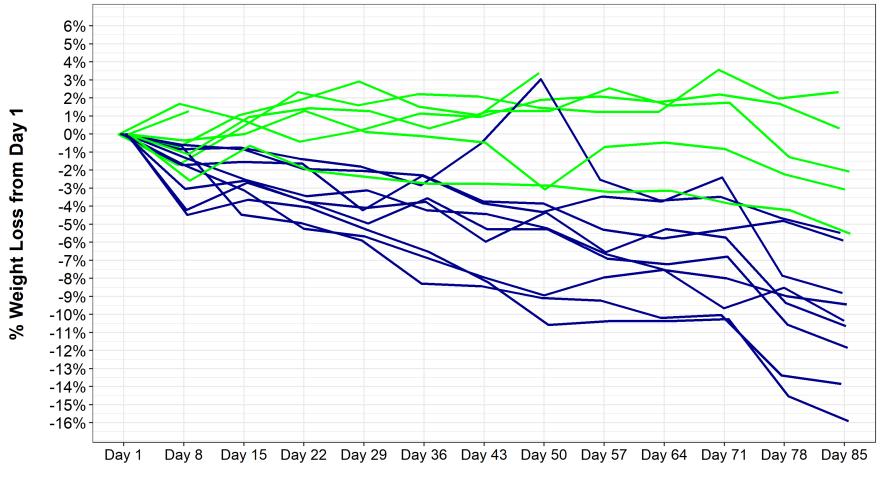
- Phase 1, first-in-human, placebocontrolled, multiple ascending dose (MAD) study in healthy overweight and obese volunteers
- Within MAD cohorts, patients were randomized 4:1 to pemvidutide or placebo, with placebos pooled across cohorts
- No dose titration
- No calorie restriction or behavioral weight loss programs

Weight loss • Safety and tolerability • Pharmacokinetics (PK)

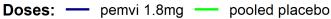

PEMVIDUTIDE PK PROFILE CONFIRMS WEEKLY DOSING

LOWER C_{max} AND DELAYED T_{max} MAY ENHANCE TOLERABILITY

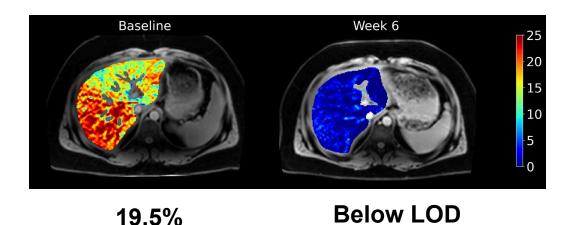
PK PARAMETER	ALT-801 1.8 mg SC
Peak concentration (C _{max})	27.1 nmol/L
Area under curve (AUC) ₀₋₁₆₈	3400 nmol•hr
Half-life (t _{1/2})	110 hrs
Time to peak concentration (T _{max})	70 hrs

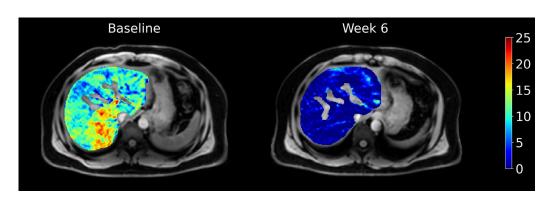

ROBUST WEIGHT LOSS AT WEEK 12

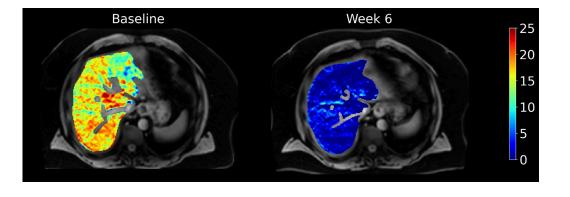
10.3% MEAN WEIGHT LOSS ACHIEVED AT 1.8 MG DOSE



MAJORITY OF SUBJECTS AT 1.8 MG DOSE ACHIEVED 10% OR MORE WEIGHT LOSS AT WEEK 12


- 55% of subjects
 achieved 10% or more
 weight loss by Week 12
- 100% of subjects achieved 5% or more weight loss by Week 12



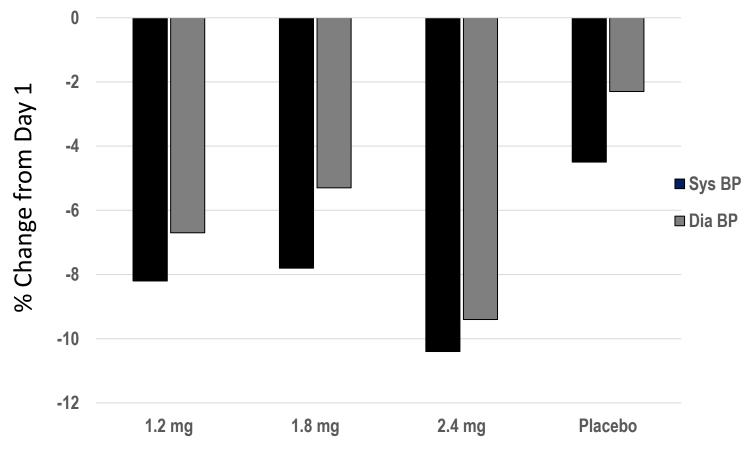

GREATER THAN 90% REDUCTION IN LIVER FAT BY MRI-PDFF IN 6 WEEKS

PEMVIDUTIDE DECREASED LFC TO UNDETECTABLE LEVELS AT THE 1.8 MG AND 2.4 MG DOSES

Below LOD

Exploratory analysis of subjects with baseline LFC ≥ 5%

Below LOD

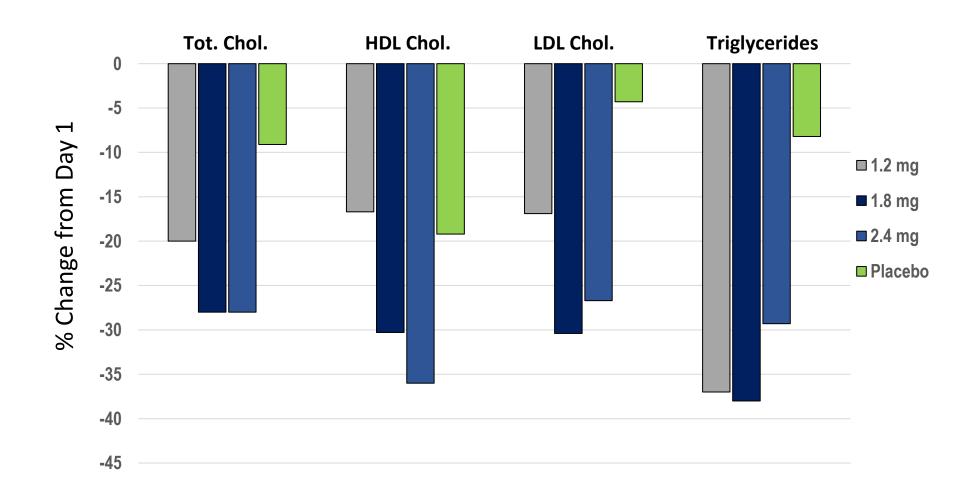

- All subjects receiving pemvidutide 1.8 or 2.4 mg achieved undetectable levels of liver fat by MRI-PDFF at Week 6 – a greater than 90% reduction
- Potentially a new standard in NASH treatment for the speed and magnitude of liver fat effects

17.0%

12.5%

CHANGE IN BLOOD PRESSURE OVER 12 WEEKS OF TREATMENT

NO CHANGES IN HEART RATE OBSERVED ACROSS DOSES



Means of weekly measurements, Weeks 1-12, compared to Baseline

IMPORTANT REDUCTION SERUM LIPIDS AT WEEK 12

REDUCTIONS OCCURRED IN ALL MAJOR LIPIDS CLASSES

GLUCOSE HOMEOSTASIS MAINTAINED

Characteristic		Treatment			
		1.2 mg	1.8 mg	2.4 mg	Pooled placebo
Fasting Serum Glucose (FSG) ¹		•	•	•	
Change from Baseline	mg/dL (%)	3.0 (3.5%)	-0.4 (-0.5%)	-0.8 (-0.9%)	-0.2 (-0.2%)
HbA1c (%)					
Baseline	mean (SD)	5.3 (0.1)	5.5 (0.2)	5.3 (0.2)	5.3 (0.2)
Week 12	mean (SD)	5.4 (0.2)	5.4 (0.3)	5.3 (0.3)	5.3 (0.3)
HOMA-IR (insulin resistance)					
Baseline	mean (SD)	2.5 (1.2)	2.4 (2.5)	3.1 (1.8)	2.4 (1.7)
Week 12	mean (SD)	2.0 (1.4)	2.2 (2.5)	2.4 (1.2)	2.4 (1.2)

¹ mean of weekly measurements, Weeks 1-12, compared to Baseline

SAFETY OVERVIEW

NO STUDY DISCONTINUATIONS DUE TO ADVERSE EVENTS

Characteristic		Treatment			
		1.2 mg	1.8 mg	2.4 mg	Pooled placebo
AEs leading to discontinuation	n (%)	0 (%)	0 (%)	0 (%)	0 (%)
Serious or severe AEs	n (%)	0 (%)	0 (%)	0 (%)	0 (%)
Nausea					
Mild	n (%)	1 (14.3%)	5 (55.6%)	5 (45.5%)	1 (14.3%)
Moderate	n (%)	1 (14.3%)	1 (11.1%)	5 (45.5%)	0 (0.0%)
Vomiting					
Mild	n (%)	1 (14.3%)	1 (11.1%)	5 (45.5%)	1 (14.3%)
Moderate	n (%)	0 (0.0%)	1 (11.1%)	3 (27.3%)	0 (0.0%)
Diarrhea					
Mild	n (%)	0 (0.0%)	0 (0.0%)	2 (18.2%)	0 (0.0%)
Moderate	n (%)	0 (0.0%)	0 (0.0%)	0 (0.0%)	0 (0.0%)
Constipation					
Mild	n (%)	0 (0.0%)	1 (11.1%)	2 (18.2%)	0 (0.0%)
Moderate	n (%)	0 (0.0%)	1 (11.1%)	1 (9.1%)	0 (0.0%)
Hyperglycemia	n (%)	0 (0.0%)	0 (0.0%)	0 (0.0%)	0 (0.0%)

Gastrointestinal Adverse Events

- Most frequently mild at 1.8 mg dose with on-drug resolution and not requiring treatment
- No study discontinuations due to AEs

SUMMARY

- Medications are needed that deliver the weight loss of bariatric surgery
- Balanced (1:1) GLP-1/glucagon dual receptor agonism provides faster and greater reductions in body weight and LFC than GLP-1 monotherapy
 - 10.3% weight loss in only 12 weeks
 - Reduction of LFC to below detectable levels in 100% of individuals at 1.8 mg and 2.4 mg
 - Glucose control is maintained
- Agents that can be administered without dose titration are attractive options as weight loss moves into primary care
 - Tolerability can be enhanced by altering PK (increasing T_{max} and lowering C_{max}) and shifting from GLP-1 to glucagon agonism to achieve weight loss and LFC targets

altimmune

NASDAQ: ALT

